forked from minghanqin/LangSplat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.sh
27 lines (22 loc) · 984 Bytes
/
process.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash
# get the language feature of the scene
python preprocess.py --dataset_name $dataset_path
# train the autoencoder
cd autoencoder
python train.py --dataset_name $dataset_path --encoder_dims 256 128 64 32 3 --decoder_dims 16 32 64 128 256 256 512 --lr 0.0007 --output ae_ckpt
# get the 3-dims language feature of the scene
python test.py --dataset_name $dataset_path --output
# ATTENTION: Before you train the LangSplat, please follow https://github.com/graphdeco-inria/gaussian-splatting
# to train the RGB 3D Gaussian Splatting model.
# put the path of your RGB model after '--start_checkpoint'
for level in 1 2 3
do
python train.py -s dataset_path -m output/${casename} --start_checkpoint $dataset_path/output/$casename/chkpnt30000.pth --feature_level ${level}
done
for level in 1 2 3
do
# render rgb
python render.py -m output/${casename}_${level}
# render language features
python render.py -m output/${casename}_${level} --include_feature
done