forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_gats.py
396 lines (332 loc) · 12.7 KB
/
pytorch_gats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pandas as pd
import copy
from ...utils import (
unpack_archive_with_buffer,
save_multiple_parts_file,
get_or_create_path,
drop_nan_by_y_index,
)
from ...log import get_module_logger
import torch
import torch.nn as nn
import torch.optim as optim
from .pytorch_utils import count_parameters
from ...model.base import Model
from ...data.dataset import DatasetH
from ...data.dataset.handler import DataHandlerLP
from ...contrib.model.pytorch_lstm import LSTMModel
from ...contrib.model.pytorch_gru import GRUModel
class GATs(Model):
"""GATs Model
Parameters
----------
lr : float
learning rate
d_feat : int
input dimensions for each time step
metric : str
the evaluate metric used in early stop
optimizer : str
optimizer name
GPU : int
the GPU ID used for training
"""
def __init__(
self,
d_feat=6,
hidden_size=64,
num_layers=2,
dropout=0.0,
n_epochs=200,
lr=0.001,
metric="",
early_stop=20,
loss="mse",
base_model="GRU",
with_pretrain=True,
model_path=None,
optimizer="adam",
GPU=0,
seed=None,
**kwargs
):
# Set logger.
self.logger = get_module_logger("GATs")
self.logger.info("GATs pytorch version...")
# set hyper-parameters.
self.d_feat = d_feat
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.n_epochs = n_epochs
self.lr = lr
self.metric = metric
self.early_stop = early_stop
self.optimizer = optimizer.lower()
self.loss = loss
self.base_model = base_model
self.with_pretrain = with_pretrain
self.model_path = model_path
self.device = torch.device("cuda:%d" % (GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.use_gpu = torch.cuda.is_available()
self.seed = seed
self.logger.info(
"GATs parameters setting:"
"\nd_feat : {}"
"\nhidden_size : {}"
"\nnum_layers : {}"
"\ndropout : {}"
"\nn_epochs : {}"
"\nlr : {}"
"\nmetric : {}"
"\nearly_stop : {}"
"\noptimizer : {}"
"\nloss_type : {}"
"\nbase_model : {}"
"\nwith_pretrain : {}"
"\nmodel_path : {}"
"\ndevice : {}"
"\nuse_GPU : {}"
"\nseed : {}".format(
d_feat,
hidden_size,
num_layers,
dropout,
n_epochs,
lr,
metric,
early_stop,
optimizer.lower(),
loss,
base_model,
with_pretrain,
model_path,
self.device,
self.use_gpu,
seed,
)
)
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.GAT_model = GATModel(
d_feat=self.d_feat,
hidden_size=self.hidden_size,
num_layers=self.num_layers,
dropout=self.dropout,
base_model=self.base_model,
)
self.logger.info("model:\n{:}".format(self.GAT_model))
self.logger.info("model size: {:.4f} MB".format(count_parameters(self.GAT_model)))
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.GAT_model.parameters(), lr=self.lr)
elif optimizer.lower() == "gd":
self.train_optimizer = optim.SGD(self.GAT_model.parameters(), lr=self.lr)
else:
raise NotImplementedError("optimizer {} is not supported!".format(optimizer))
self.fitted = False
self.GAT_model.to(self.device)
@property
def use_gpu(self):
return self.device != torch.device("cpu")
def mse(self, pred, label):
loss = (pred - label) ** 2
return torch.mean(loss)
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
if self.loss == "mse":
return self.mse(pred[mask], label[mask])
raise ValueError("unknown loss `%s`" % self.loss)
def metric_fn(self, pred, label):
mask = torch.isfinite(label)
if self.metric == "" or self.metric == "loss":
return -self.loss_fn(pred[mask], label[mask])
raise ValueError("unknown metric `%s`" % self.metric)
def get_daily_inter(self, df, shuffle=False):
# organize the train data into daily batches
daily_count = df.groupby(level=0).size().values
daily_index = np.roll(np.cumsum(daily_count), 1)
daily_index[0] = 0
if shuffle:
# shuffle data
daily_shuffle = list(zip(daily_index, daily_count))
np.random.shuffle(daily_shuffle)
daily_index, daily_count = zip(*daily_shuffle)
return daily_index, daily_count
def train_epoch(self, x_train, y_train):
x_train_values = x_train.values
y_train_values = np.squeeze(y_train.values)
self.GAT_model.train()
# organize the train data into daily batches
daily_index, daily_count = self.get_daily_inter(x_train, shuffle=True)
for idx, count in zip(daily_index, daily_count):
batch = slice(idx, idx + count)
feature = torch.from_numpy(x_train_values[batch]).float().to(self.device)
label = torch.from_numpy(y_train_values[batch]).float().to(self.device)
pred = self.GAT_model(feature)
loss = self.loss_fn(pred, label)
self.train_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.GAT_model.parameters(), 3.0)
self.train_optimizer.step()
def test_epoch(self, data_x, data_y):
# prepare training data
x_values = data_x.values
y_values = np.squeeze(data_y.values)
self.GAT_model.eval()
scores = []
losses = []
# organize the test data into daily batches
daily_index, daily_count = self.get_daily_inter(data_x, shuffle=False)
for idx, count in zip(daily_index, daily_count):
batch = slice(idx, idx + count)
feature = torch.from_numpy(x_values[batch]).float().to(self.device)
label = torch.from_numpy(y_values[batch]).float().to(self.device)
pred = self.GAT_model(feature)
loss = self.loss_fn(pred, label)
losses.append(loss.item())
score = self.metric_fn(pred, label)
scores.append(score.item())
return np.mean(losses), np.mean(scores)
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
save_path=None,
):
df_train, df_valid, df_test = dataset.prepare(
["train", "valid", "test"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
save_path = get_or_create_path(save_path)
stop_steps = 0
best_score = -np.inf
best_epoch = 0
evals_result["train"] = []
evals_result["valid"] = []
# load pretrained base_model
if self.with_pretrain:
if self.model_path == None:
raise ValueError("the path of the pretrained model should be given first!")
self.logger.info("Loading pretrained model...")
if self.base_model == "LSTM":
pretrained_model = LSTMModel()
pretrained_model.load_state_dict(torch.load(self.model_path))
elif self.base_model == "GRU":
pretrained_model = GRUModel()
pretrained_model.load_state_dict(torch.load(self.model_path))
else:
raise ValueError("unknown base model name `%s`" % self.base_model)
model_dict = self.GAT_model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_model.state_dict().items() if k in model_dict}
model_dict.update(pretrained_dict)
self.GAT_model.load_state_dict(model_dict)
self.logger.info("Loading pretrained model Done...")
# train
self.logger.info("training...")
self.fitted = True
for step in range(self.n_epochs):
self.logger.info("Epoch%d:", step)
self.logger.info("training...")
self.train_epoch(x_train, y_train)
self.logger.info("evaluating...")
train_loss, train_score = self.test_epoch(x_train, y_train)
val_loss, val_score = self.test_epoch(x_valid, y_valid)
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
evals_result["train"].append(train_score)
evals_result["valid"].append(val_score)
if val_score > best_score:
best_score = val_score
stop_steps = 0
best_epoch = step
best_param = copy.deepcopy(self.GAT_model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.early_stop:
self.logger.info("early stop")
break
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
self.GAT_model.load_state_dict(best_param)
torch.save(best_param, save_path)
if self.use_gpu:
torch.cuda.empty_cache()
def predict(self, dataset):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare("test", col_set="feature")
index = x_test.index
self.GAT_model.eval()
x_values = x_test.values
preds = []
# organize the data into daily batches
daily_index, daily_count = self.get_daily_inter(x_test, shuffle=False)
for idx, count in zip(daily_index, daily_count):
batch = slice(idx, idx + count)
x_batch = torch.from_numpy(x_values[batch]).float().to(self.device)
with torch.no_grad():
pred = self.GAT_model(x_batch).detach().cpu().numpy()
preds.append(pred)
return pd.Series(np.concatenate(preds), index=index)
class GATModel(nn.Module):
def __init__(self, d_feat=6, hidden_size=64, num_layers=2, dropout=0.0, base_model="GRU"):
super().__init__()
if base_model == "GRU":
self.rnn = nn.GRU(
input_size=d_feat,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
dropout=dropout,
)
elif base_model == "LSTM":
self.rnn = nn.LSTM(
input_size=d_feat,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
dropout=dropout,
)
else:
raise ValueError("unknown base model name `%s`" % base_model)
self.hidden_size = hidden_size
self.d_feat = d_feat
self.transformation = nn.Linear(self.hidden_size, self.hidden_size)
self.a = nn.Parameter(torch.randn(self.hidden_size * 2, 1))
self.a.requires_grad = True
self.fc = nn.Linear(self.hidden_size, self.hidden_size)
self.fc_out = nn.Linear(hidden_size, 1)
self.leaky_relu = nn.LeakyReLU()
self.softmax = nn.Softmax(dim=1)
def cal_attention(self, x, y):
x = self.transformation(x)
y = self.transformation(y)
sample_num = x.shape[0]
dim = x.shape[1]
e_x = x.expand(sample_num, sample_num, dim)
e_y = torch.transpose(e_x, 0, 1)
attention_in = torch.cat((e_x, e_y), 2).view(-1, dim * 2)
self.a_t = torch.t(self.a)
attention_out = self.a_t.mm(torch.t(attention_in)).view(sample_num, sample_num)
attention_out = self.leaky_relu(attention_out)
att_weight = self.softmax(attention_out)
return att_weight
def forward(self, x):
# x: [N, F*T]
x = x.reshape(len(x), self.d_feat, -1) # [N, F, T]
x = x.permute(0, 2, 1) # [N, T, F]
out, _ = self.rnn(x)
hidden = out[:, -1, :]
att_weight = self.cal_attention(hidden, hidden)
hidden = att_weight.mm(hidden) + hidden
hidden = self.fc(hidden)
hidden = self.leaky_relu(hidden)
return self.fc_out(hidden).squeeze()