-
Notifications
You must be signed in to change notification settings - Fork 0
/
BP2.py
executable file
·195 lines (162 loc) · 5.42 KB
/
BP2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/home/caozhong/anaconda2/bin/python
# --*-- coding: utf-8 --*--
# ***********************************
# @version : python 2.7.13
# @File : BP2.py
# @Author : caozhong
# @Email : [email protected]
# @Software: PyCharm
# @Time : 3/16/17 11:54 PM
# ***********************************
import math
import random
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
random.seed(0)
# calculate a random number where: a <= rand < b
def rand(a, b):
return (b-a)*random.random() + a
# sigmoid funtion
def sigmoid(x):
return 1/(1+math.exp(-x))
#return math.tanh(x)
# derivative of sigmoid function
def dsigmoid(y):
return y*(1 - y)
#return 1.0 - x**2
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
self.ni = ni + 1 # +1 for bias node
self.nh = nh
self.no = no
# activations for nodes
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create weights
self.wi = np.zeros((self.ni, self.nh))
#self.wi = np.array([[3, 7, 1, 0, 7, 7, 2],
# [-7, -3, 0, 1, 0, 0, 2],
# [-1, 0, -1, -1, -4, 5, 2],
# ])
self.wo = np.zeros((self.nh, self.no))
#self.wo = np.array([[-3], [-2], [-4], [-2], [-4], [-3], [-4], [-3]])
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-2, 2)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-20, 20)
# last change in weights for momentum
self.ci = np.zeros((self.ni, self.nh))
self.co = np.zeros((self.nh, self.no))
# self.ci = self.wi
# self.co = self.wo
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('wrong number of inputs')
# input activations
for i in range(self.ni-1):
self.ai[i] = inputs[i]
# hidden activations
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum += self.ai[i] * self.wi[i][j]
self.ah[j] = sigmoid(sum)
# output activations
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum += self.ah[j] * self.wo[j][k]
self.ao[k] = sigmoid(sum)
return self.ao[:]
# back propagate
def backPropagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError('wrong number of target values')
# calcute error terms for output
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k] - self.ao[k]
output_deltas[k] = dsigmoid(self.ao[k]) * error
# calculate error terms for hidden
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error += output_deltas[k] * self.wo[j][k]
hidden_deltas[j] = dsigmoid(self.ah[j]) * error
# update output weights
# N: learning rate
# M: momentum factor
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k] * self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
# update input weights
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j] * self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calculate error
error = 0.0
for k in range(len(targets)):
error += 0.5*(targets[k]-self.ao[k])**2
return error
# test
def test(self, patterns):
for p in patterns:
print(p[0], '->', self.update(p[0]), p[1])
def weights(self):
print('Input weights:')
for i in range(self.ni):
print(self.wi[i])
print()
print('Output weights:')
for j in range(self.nh):
print(self.wo[j])
def train(self, patterns, iterations=10000, N=0.1, M=0.4):
# N: learning rate
# M: momentum factor
for i in range(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error += self.backPropagate(targets, N, M)
if i % 100 == 0:
print('error %-.5f' % error)
def generate(n):
pat = []
for i in range(n):
x1 = rand(-2, 2)
x2 = rand(-2, 2)
y = 10.0/(4*x1**2 - 2.1*x1**4 + 1/3*x1**6 + x1*x2 - 4*x2**2 + 4*x2**4 + 2)/11.0
pat.append([[x1, x2], [y]])
return pat
def curve():
fig = plt.figure()
ax = Axes3D(fig)
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
y = 10.0/(4*x1**2 - 2.1*x1**4 + 1/3*x1**6 + x1*x2 - 4*x2**2 + 4*x2**4 + 2)/11.0
ax.plot_surface(x1, x2, y)
def demo():
pat = generate(200)
# create a network with two input, two hidden, and one output nodes
n = NN(2, 7, 1)
# train it with some patterns
n.train(pat)
# test it
n.test(pat)
if __name__ == '__main__':
demo()
curve()
plt.show()