-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvector.c
executable file
·560 lines (427 loc) · 10.1 KB
/
vector.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
** This is a collection of procedures to determine vector sums and products,
** as well as common angles between vectors and their trigonometric functions.
**
** Copyright (c) 2003-2010 Alexei Podtelezhnikov
*/
#include<math.h>
#include"vector.h"
/*
********** Trivial vector functions
*/
double *castvec(vector b, vector a)
{
b[0] = a[0];
b[1] = a[1];
b[2] = a[2];
return b;
}
/* vector addition */
double *add(vector apb, vector a, vector b)
{
apb[0] = a[0] + b[0];
apb[1] = a[1] + b[1];
apb[2] = a[2] + b[2];
return apb;
}
/* vector subtraction */
double *subtract(vector amb, vector a, vector b)
{
amb[0] = a[0] - b[0];
amb[1] = a[1] - b[1];
amb[2] = a[2] - b[2];
return amb;
}
/* scale a vector */
double *scale(vector qa, scalar q, vector a)
{
qa[0] = q * a[0];
qa[1] = q * a[1];
qa[2] = q * a[2];
return qa;
}
/* update a vector */
double *fling(vector apb, vector a, double bb, vector b)
{
apb[0] = a[0] + bb * b[0];
apb[1] = a[1] + bb * b[1];
apb[2] = a[2] + bb * b[2];
return apb;
}
/* linear combination */
double *lincomb(vector apb, double aa, vector a, double bb, vector b)
{
apb[0] = aa * a[0] + bb * b[0];
apb[1] = aa * a[1] + bb * b[1];
apb[2] = aa * a[2] + bb * b[2];
return apb;
}
/* dot product */
double dotprod(vector a, vector b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/* square length of a vector */
double square(vector a)
{
return a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
}
/* invsquare calculates inverse square length 1/(aa) */
double invsquare(vector a)
{
return 1.0 / square(a);
}
/* cross product */
double *crossprod(vector ab, vector a, vector b)
{
ab[0] = a[1] * b[2] - a[2] * b[1];
ab[1] = a[2] * b[0] - a[0] * b[2];
ab[2] = a[0] * b[1] - a[1] * b[0];
return ab;
}
/* entry-wise Schur-Hadamard product */
double *schurprod(vector ab, vector a, vector b)
{
ab[0] = a[0] * b[0];
ab[1] = a[1] * b[1];
ab[2] = a[2] * b[2];
return ab;
}
/* scalar triple product */
double triprod(vector a, vector b, vector c)
{
vector bc;
crossprod(bc, b, c);
return dotprod(a, bc);
}
/* vector triangle area */
double *triarea(vector abc, vector a, vector b, vector c)
{
vector ab, bc;
subtract(ab, a, b);
subtract(bc, b, c);
crossprod(abc, ab, bc);
return abc;
}
/* square distance between two points */
double distance(vector a, vector b)
{
double x, y, z;
x = a[0] - b[0];
y = a[1] - b[1];
z = a[2] - b[2];
return x * x + y * y + z * z;
}
/* square point-line distance */
double pointline(vector a, vector b, vector v)
{
vector ab, abv;
subtract(ab, a, b);
crossprod(abv, ab, v);
return square(abv) / square(v);
}
/* square line-line distance */
double lineline(vector a, vector b, vector u, vector v)
{
vector ab, uv;
double vol;
subtract(ab, a, b);
crossprod(uv, u, v);
vol = dotprod(ab, uv);
return vol * vol / square(uv);
}
/* non-orthogonal projected components */
double *triprjct(vector q, vector p, vector a, vector b, vector c)
{
vector abc, x;
double d;
triarea(abc, a, b, c);
d = 1.0 / square(abc);
triarea(x, p, b, c);
q[0] = dotprod(x, abc) * d;
triarea(x, a, p, c);
q[1] = dotprod(x, abc) * d;
triarea(x, a, b, p);
q[2] = dotprod(x, abc) * d;
return q;
}
/* non-orthogonal 2d components a = q0*b + q1*c */
double *twocomps(vector q, vector a, vector b, vector c)
{
double ab, bc, ca, b2, c2, d;
ab = dotprod(a, b);
bc = dotprod(b, c);
ca = dotprod(c, a);
b2 = square(b);
c2 = square(c);
d = 1.0 / (b2 * c2 - bc * bc);
q[0] = (ab * c2 - bc * ca) * d;
q[1] = (b2 * ca - ab * bc) * d;
q[2] = 1.0 - q[0] - q[1];
return q;
}
/* non-orthogonal 3d components */
double *tricomps(vector q, vector p, vector a, vector b, vector c)
{
double d;
vector x;
crossprod(x, b, c);
d = 1.0 / dotprod(a, x);
q[0] = dotprod(p, x) * d;
crossprod(x, c, a);
q[1] = dotprod(p, x) * d;
crossprod(x, a, b);
q[2] = dotprod(p, x) * d;
return q;
}
/* vector normalization */
double normalize(vector a)
{
double inva;
inva = 1.0 / sqrt(square(a));
scale(a, inva, a);
return inva;
}
/* quick normalization of an almost unit vector */
double normalize_1(vector a)
{
double inva, a2;
a2 = square(a);
/* Taylor expansion */
inva = 1.5 - 0.5 * a2;
/* inva = 1.875 - (1.25 - 0.375 * a2) * a2; */
/* inva = 2.1875 - (2.1875 - (1.3125 - 0.3125 * a2) * a2) * a2; */
/* inva = 0.5 * (1.0 / a2 + 1.0); */
/* Newton-Halley iteration */
/* inva = (a2 + 3.0) / (3.0 * a2 + 1.0); */
scale(a, inva, a);
return inva;
}
/*
********** Angles between vectors (Arcfunctions)
*/
/* xy_ functions facilitate implicit summation of angles */
Comp xy_add(Comp a, Comp b)
{
Comp xy;
xy.x = a.x * b.x - a.y * b.y;
xy.y = a.x * b.y + a.y * b.x;
return xy;
}
Comp xy_angle(vector a, vector b)
{
vector ab;
Comp xy;
xy.x = dotprod(a, b);
crossprod(ab, a, b);
xy.y = sqrt(square(ab));
return xy;
}
Comp xy_dihedral(vector a, vector b, vector c)
{
vector ab, bc;
Comp xy;
crossprod(ab, a, b);
crossprod(bc, b, c);
xy.x = dotprod(ab, bc);
xy.y = dotprod(ab, c) * sqrt(square(b));
return xy;
}
/* The angle between two vectors is given by
angle = atan { |[ab]| / (ab) }
Computing atan2 is significantly faster than acos. */
double angle(vector a, vector b)
{
vector ab;
crossprod(ab, a, b);
return atan2(sqrt(square(ab)), dotprod(a, b));
}
/* dihedral calculates the angle given by three vectors
dihedral = atan { [abc]|b| / ([ab][bc]) }
Using atan2 saves CPU cycles and defines the proper quadrant.
Total: 22 multiplications, 12 additions, 1 sqrt and 1 atan2. */
double dihedral(vector a, vector b, vector c)
{
vector ab, bc;
double b1;
crossprod(ab, a, b);
crossprod(bc, b, c);
b1 = sqrt(square(b));
return atan2(dotprod(ab, c) * b1, dotprod(ab, bc));
}
/* If |b| = 1, dihedral angle calculation avoids sqrt. It is very fast. */
double dihedral_1(vector a, vector b, vector c)
{
vector ab, bc;
crossprod(ab, a, b);
crossprod(bc, b, c);
return atan2(dotprod(ab, c), dotprod(ab, bc));
}
double dihedral_4(vector a0, vector a1, vector a2, vector a3)
{
vector a, b, c;
subtract(a, a1, a0);
subtract(b, a2, a1);
subtract(c, a3, a2);
return dihedral(a, b, c);
}
double dihedral_rama(vector a0, vector a1, vector a2, vector a3, double b1)
{
vector a, b, c;
subtract(a, a1, a0);
subtract(b, a2, a1);
subtract(c, a3, a2);
vector ab, bc;
crossprod(ab, a, b);
crossprod(bc, b, c);
return atan2(dotprod(ab, c) * b1, dotprod(ab, bc));
}
/* solid angle between three vectors according to Oosterom and Strackee (1983).
Total: 33 multiplications, 20 additions, 3 sqrt's, and 1 atan2 */
double excess(vector a, vector b, vector c)
{
double abc, ab, bc, ca, a1, b1, c1;
abc = triprod(a, b, c);
ab = dotprod(a, b);
bc = dotprod(b, c);
ca = dotprod(c, a);
a1 = sqrt(square(a));
b1 = sqrt(square(b));
c1 = sqrt(square(c));
return 2.0 * atan2(abc, a1 * b1 * c1 + ab * c1 + bc * a1 + ca * b1);
}
/*
********** Direct trigonometric functions from vectors
*/
/* Square cosine of the angle between two vectors.
This is the fastest angular measure */
double sqcosine(vector a, vector b)
{
double ab, a2, b2;
ab = dotprod(a, b);
a2 = square(a);
b2 = square(b);
return (ab * ab) / (a2 * b2);
}
/* Cosine of the angle between two vectors.
Total: 10 multiplications, 6 additions, 1 division, and 1 sqrt. */
double cosine(vector a, vector b)
{
double ab, a2, b2;
ab = dotprod(a, b);
a2 = square(a);
b2 = square(b);
return ab / sqrt(a2 * b2);
}
/* cosine of a-b-c angle */
double cosangle(vector a, vector b, vector c) {
vector ba;
subtract(ba, a, b);
vector bc;
subtract(bc, c, b);
return cosine(ba,bc);
}
int cosgreater(vector a, vector b, double c)
{
double ab, a2, b2;
ab = dotprod(a, b);
a2 = square(a);
b2 = square(b);
return ab * fabs(ab) > c * fabs(c) * a2 * b2;
}
/* Sine of the angle between two vectors */
double sine(vector a, vector b)
{
double ab, c2;
vector c;
ab = dotprod(a, b);
crossprod(c, a, b);
c2 = square(c);
return sqrt(c2 / (ab * ab + c2));
/* faster and less accurately
return sqrt(1.0 - sqcosine(a, b)); */
}
/* Sine of an angle with a phase shift specified by its y and x coordinates.
This calculates linear combination of y * cos + x * sin. */
double phasine(vector a, vector b, double y, double x)
{
double ab, c2;
vector c;
ab = dotprod(a, b);
crossprod(c, a, b);
c2 = square(c);
return (y * ab + x * sqrt(c2)) / sqrt(ab * ab + c2);
}
/* Tangent of the angle between two vectors */
double tangent(vector a, vector b)
{
vector ab;
crossprod(ab, a, b);
return sqrt(square(ab)) / dotprod(a, b);
}
/* Cosine of the triple angle between two vectors */
double costri(vector a, vector b)
{
double cosab;
cosab = cosine(a, b);
return (4.0 * cosab * cosab - 3.0) * cosab;
}
/* Square cosine of the dihedral angle between three vectors. */
double sqcosdihedral(vector a, vector b, vector c)
{
vector ab, bc;
crossprod(ab, a, b);
crossprod(bc, b, c);
return sqcosine(ab, bc);
}
/* Cosine of dihedral angle. */
double cosdihedral(vector a, vector b, vector c)
{
vector ab, bc;
crossprod(ab, a, b);
crossprod(bc, b, c);
return cosine(ab, bc);
}
/* Sine of dihedral angle. */
double sindihedral(vector a, vector b, vector c)
{
vector ab, bc;
double pcos, abc, b2;
crossprod(ab, a, b);
crossprod(bc, b, c);
pcos = dotprod(ab, bc);
abc = dotprod(ab, c);
b2 = square(b);
return abc * sqrt(b2 / (pcos * pcos + abc * abc * b2));
}
/* Sine of dihedral angle with phase shift specified by y and x coordinates.
This calculates linear combination of y * cos + x * sin. */
double phasindihedral(vector a, vector b, vector c, double y, double x)
{
vector ab, bc;
double pcos, psin;
crossprod(ab, a, b);
crossprod(bc, b, c);
pcos = dotprod(ab, bc);
psin = dotprod(ab, c) * sqrt(square(b));
return (y * pcos + x * psin) / sqrt(pcos * pcos + psin * psin);
}
/* Tangent of dihedral angle */
double tandihedral(vector a, vector b, vector c)
{
vector ab, bc;
double pcos, psin;
crossprod(ab, a, b);
crossprod(bc, b, c);
pcos = dotprod(ab, bc);
psin = dotprod(ab, c) * sqrt(square(b));
return psin / pcos;
}
/* Cosine of triple dihedral angle */
double costridihedral(vector a, vector b, vector c)
{
vector ab, bc;
crossprod(ab, a, b);
crossprod(bc, b, c);
return costri(ab, bc);
}