-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathorder.cpp
138 lines (109 loc) · 3.5 KB
/
order.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include "node.h"
#include "opt.h"
#include "nodeimpl.h"
#include "regimpl.h"
#include <climits>
#include <vector>
#include <map>
#include <unordered_map>
#include <list>
#include <unordered_set>
#include <iostream>
#include <random>
#include <algorithm>
#include <limits>
using namespace std;
using namespace chdl;
unsigned SEED(0x1234);
default_random_engine rando(SEED);
struct edge: public pair<nodeid_t, nodeid_t> {
edge(nodeid_t a, nodeid_t b): pair<nodeid_t, nodeid_t>(a>b?b:a, a>b?a:b) {
// assert(a != b);
}
};
ostream &operator<<(ostream &o, const edge &e) {
o << '(' << e.first << ", " << e.second << ')';
return o;
}
static void find_neighbors(unordered_map<nodeid_t, vector<nodeid_t> > &m) {
for (auto p : nodes) {
if (auto r = dynamic_cast<regimpl*>(p)) {
if (nodeid_t(r->d) != r->id) {
m[r->d].push_back(r->id);
m[r->id].push_back(r->d);
}
}
for (auto s : p->src) {
m[p->id].push_back(s);
m[s].push_back(p->id);
}
}
}
static double sa_temp(unsigned step, unsigned steps) {
double t(double(step + 1)/steps);
t = 1000000 * pow(0.9, 100*t);
return t;
}
static unsigned sa_len(nodeid_t n, nodeid_t m,
unordered_map<nodeid_t, int> &edgepos,
unordered_map<nodeid_t, vector<nodeid_t> > &neighbors)
{
unsigned len(0);
for (auto x : neighbors[n])
if (x != m) len += abs(edgepos[x] - edgepos[n]);
return len;
}
static unsigned total_len(unordered_map<nodeid_t, int> &edgepos,
unordered_map<nodeid_t, vector<nodeid_t> > &neighbors)
{
unsigned total(0);
for (nodeid_t i = 0; i < nodes.size(); ++i)
for (auto n : neighbors[i])
total += abs(edgepos[n] - edgepos[i]);
cout << "Sum of edge lengths: " << total/2.0 << endl;
return total / 2;
}
static void sa_verify(vector<nodeid_t> o) {
unordered_map<nodeid_t, int> edgepos;
unordered_map<nodeid_t, vector<nodeid_t> > neighbors;
// Create a reverse lookup (nodeid -> edge position in o)
for (nodeid_t i = 0; i < o.size(); ++i) edgepos[o[i]] = i;
find_neighbors(neighbors);
// Find length of every edge in the design
total_len(edgepos, neighbors);
}
void chdl::order(vector<nodeid_t> &o, unsigned steps) {
o.clear();
if (steps == 0) steps = 10 * nodes.size() * nodes.size();
unordered_map<nodeid_t, int> edgepos;
unordered_map<nodeid_t, vector<nodeid_t> > neighbors;
// Create an initial randomized set
for (nodeid_t i = 0; i < nodes.size(); ++i) o.push_back(i);
shuffle(o.begin(), o.end(), rando);
// Create a reverse lookup (nodeid -> edge position in o)
for (nodeid_t i = 0; i < o.size(); ++i) edgepos[o[i]] = i;
find_neighbors(neighbors);
// Find length of every edge in the design
total_len(edgepos, neighbors);
int gainsum(0);
for (unsigned step = 0; step < steps; ++step) {
uniform_int_distribution<> da(0, o.size()-1), db(0,o.size()-1);
unsigned a_idx(da(rando)), b_idx(db(rando));
nodeid_t na(o[a_idx]), nb(o[b_idx]);
int l0(sa_len(na, nb, edgepos, neighbors) +
sa_len(nb, na, edgepos, neighbors));
swap(edgepos[na], edgepos[nb]);
swap(o[a_idx], o[b_idx]);
int l1(sa_len(na, nb, edgepos, neighbors) +
sa_len(nb, na, edgepos, neighbors));
uniform_real_distribution<> d(0,1.0);
if (l1 > l0 && d(rando) > exp(-(l1-l0)/sa_temp(step, steps))) {
swap(edgepos[na], edgepos[nb]);
swap(o[a_idx], o[b_idx]);
} else {
gainsum += l0 - l1;
}
//cout << "gainsum = " << gainsum << endl;
}
total_len(edgepos, neighbors);
}