Skip to content

Latest commit

 

History

History
463 lines (438 loc) · 46.7 KB

transformers.rst

File metadata and controls

463 lines (438 loc) · 46.7 KB

PaddleNLP Transformer API

随着深度学习的发展,NLP领域涌现了一大批高质量的Transformer类预训练模型,多次刷新各种NLP任务SOTA(State of the Art)。 PaddleNLP为用户提供了常用的 BERTERNIEALBERTRoBERTaXLNet 等经典结构预训练模型, 让开发者能够方便快捷应用各类Transformer预训练模型及其下游任务。

Transformer预训练模型汇总

下表汇总了介绍了目前PaddleNLP支持的各类预训练模型以及对应预训练权重。我们目前提供了 70 种预训练的参数权重供用户使用, 其中包含了 34 种中文语言模型的预训练权重。

Model Pretrained Weight Language Details of the model
ALBERT albert-base-v1 English 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters ALBERT base model
albert-large-v1 English 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters ALBERT large model
albert-xlarge-v1 English 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters ALBERT xlarge model
albert-xxlarge-v1 English 12 repeating layers, 128 embedding, 4096-hidden, 64-heads, 223M parameters ALBERT xxlarge model
albert-base-v2 English 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters ALBERT base model (version2)
albert-large-v2 English 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters ALBERT large model (version2)
albert-xlarge-v2 English 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters ALBERT xlarge model (version2)
albert-xxlarge-v2 English 12 repeating layers, 128 embedding, 4096-hidden, 64-heads, 223M parameters ALBERT xxlarge model (version2)
albert-chinese-tiny Chinese 4 repeating layers, 128 embedding, 312-hidden, 12-heads, 4M parameters ALBERT tiny model (Chinese)
albert-chinese-small Chinese 6 repeating layers, 128 embedding, 384-hidden, 12-heads, _M parameters ALBERT small model (Chinese)
albert-chinese-base Chinese 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 12M parameters ALBERT base model (Chinese)
albert-chinese-large Chinese 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 18M parameters ALBERT large model (Chinese)
albert-chinese-xlarge Chinese 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 60M parameters ALBERT xlarge model (Chinese)
albert-chinese-xxlarge Chinese 12 repeating layers, 128 embedding, 4096-hidden, 16-heads, 235M parameters ALBERT xxlarge model (Chinese)
BERT bert-base-uncased English 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on lower-cased English text.
bert-large-uncased English 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text.
bert-base-cased English 12-layer, 768-hidden, 12-heads, 109M parameters. Trained on cased English text.
bert-large-cased English 24-layer, 1024-hidden, 16-heads, 335M parameters. Trained on cased English text.
bert-base-multilingual-uncased Multilingual 12-layer, 768-hidden, 12-heads, 168M parameters. Trained on lower-cased text in the top 102 languages with the largest Wikipedias.
bert-base-multilingual-cased Multilingual 12-layer, 768-hidden, 12-heads, 179M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias.
bert-base-chinese Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text.
bert-wwm-chinese Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text using Whole-Word-Masking.
bert-wwm-ext-chinese Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text using Whole-Word-Masking with extented data.
simbert-base-chinese Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on 22 million pairs of similar sentences crawed from Baidu Know.
BigBird bigbird-base-uncased English 12-layer, 768-hidden, 12-heads, _M parameters. Trained on lower-cased English text.
DistilBert distilbert-base-uncased English 6-layer, 768-hidden, 12-heads, 66M parameters. The DistilBERT model distilled from the BERT model bert-base-uncased
distilbert-base-cased English 6-layer, 768-hidden, 12-heads, 66M parameters. The DistilBERT model distilled from the BERT model bert-base-cased
ELECTRA electra-small English 12-layer, 768-hidden, 4-heads, _M parameters. Trained on lower-cased English text.
electra-base English 12-layer, 768-hidden, 12-heads, _M parameters. Trained on lower-cased English text.
electra-large English 24-layer, 1024-hidden, 16-heads, _M parameters. Trained on lower-cased English text.
chinese-electra-small Chinese 12-layer, 768-hidden, 4-heads, _M parameters. Trained on Chinese text.
chinese-electra-base Chinese 12-layer, 768-hidden, 12-heads, _M parameters. Trained on Chinese text.
ERNIE ernie-1.0 Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text.
ernie-tiny Chinese 3-layer, 1024-hidden, 16-heads, _M parameters. Trained on Chinese text.
ernie-2.0-en English 12-layer, 768-hidden, 12-heads, 103M parameters. Trained on lower-cased English text.
ernie-2.0-large-en English 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text.
ERNIE-DOC ernie-doc-base-zh Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text.
ernie-doc-base-en English 12-layer, 768-hidden, 12-heads, 103M parameters. Trained on lower-cased English text.
ERNIE-GEN ernie-gen-base-en English 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on lower-cased English text.
ernie-gen-large-en English 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text.
ernie-gen-large-en-430g English 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text. with extended data (430 GB).
ERNIE-GRAM ernie-gram-zh Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text.
GPT gpt-cpm-large-cn Chinese 32-layer, 2560-hidden, 32-heads, 2.6B parameters. Trained on Chinese text.
gpt-cpm-small-cn-distill Chinese 12-layer, 768-hidden, 12-heads, 109M parameters. The model distilled from the GPT model gpt-cpm-large-cn
gpt2-medium-en English 24-layer, 1024-hidden, 16-heads, 345M parameters. Trained on English text.
NeZha nezha-base-chinese Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text.
nezha-large-chinese Chinese 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on Chinese text.
nezha-base-wwm-chinese Chinese 12-layer, 768-hidden, 16-heads, 108M parameters. Trained on Chinese text.
nezha-large-wwm-chinese Chinese 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on Chinese text.
RoBERTa roberta-wwm-ext Chinese 12-layer, 768-hidden, 12-heads, 102M parameters. Trained on English Text using Whole-Word-Masking with extended data.
roberta-wwm-ext-large Chinese 24-layer, 1024-hidden, 16-heads, 325M parameters. Trained on English Text using Whole-Word-Masking with extended data.
rbt3 Chinese 3-layer, 768-hidden, 12-heads, 38M parameters.
rbtl3 Chinese 3-layer, 1024-hidden, 16-heads, 61M parameters.
SKEP skep_ernie_1.0_large_ch Chinese 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained using the Erine model ernie_1.0
skep_ernie_2.0_large_en English 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained using the Erine model ernie_2.0_large_en
skep_roberta_large_en English 24-layer, 1024-hidden, 16-heads, 355M parameters. Trained using the RoBERTa model roberta_large_en
TinyBert tinybert-4l-312d English 4-layer, 312-hidden, 12-heads, 14.5M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
tinybert-6l-768d English 6-layer, 768-hidden, 12-heads, 67M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
tinybert-4l-312d-v2 English 4-layer, 312-hidden, 12-heads, 14.5M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
tinybert-6l-768d-v2 English 6-layer, 768-hidden, 12-heads, 67M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
tinybert-4l-312d-zh Chinese 4-layer, 312-hidden, 12-heads, 14.5M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
tinybert-6l-768d-zh Chinese 6-layer, 768-hidden, 12-heads, 67M parameters. The TinyBert model distilled from the BERT model bert-base-uncased
UnifiedTransformer unified_transformer-12L-cn Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text.
unified_transformer-12L-cn-luge Chinese 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text (LUGE.ai).
plato-mini Chinese 6-layer, 768-hidden, 12-heads, 66M parameters. Trained on Chinese text.
XLNet xlnet-base-cased English 12-layer, 768-hidden, 12-heads, 110M parameters. XLNet English model
xlnet-large-cased English 24-layer, 1024-hidden, 16-heads, 340M parameters. XLNet Large English model
chinese-xlnet-base Chinese 12-layer, 768-hidden, 12-heads, 117M parameters. XLNet Chinese model
chinese-xlnet-mid Chinese 24-layer, 768-hidden, 12-heads, 209M parameters. XLNet Medium Chinese model
chinese-xlnet-large Chinese 24-layer, 1024-hidden, 16-heads, _M parameters. XLNet Large Chinese model

Transformer预训练模型适用任务汇总

Model Sequence Classification Token Classification Question Answering Text Generation
ALBERT
BERT
BigBird
DistilBert
ELECTRA
ERNIE
ERNIE-DOC
ERNIE-GEN
ERNIE-GRAM
GPT
NeZha
RoBERTa
SKEP
TinyBert
UnifiedTransformer
XLNet

预训练模型使用方法

PaddleNLP Transformer API在提丰富预训练模型的同时,也降低了用户的使用门槛。 只需十几行代码,用户即可完成模型加载和下游任务Fine-tuning。

from functools import partial
import numpy as np

import paddle
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer

train_ds = load_dataset("chnsenticorp", splits=["train"])

model = BertForSequenceClassification.from_pretrained("bert-wwm-chinese", num_classes=len(train_ds.label_list))

tokenizer = BertTokenizer.from_pretrained("bert-wwm-chinese")

def convert_example(example, tokenizer):
    encoded_inputs = tokenizer(text=example["text"], max_seq_len=512, pad_to_max_seq_len=True)
    return tuple([np.array(x, dtype="int64") for x in [
            encoded_inputs["input_ids"], encoded_inputs["token_type_ids"], [example["label"]]]])
train_ds = train_ds.map(partial(convert_example, tokenizer=tokenizer))

batch_sampler = paddle.io.BatchSampler(dataset=train_ds, batch_size=8, shuffle=True)
train_data_loader = paddle.io.DataLoader(dataset=train_ds, batch_sampler=batch_sampler, return_list=True)

optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters())

criterion = paddle.nn.loss.CrossEntropyLoss()

for input_ids, token_type_ids, labels in train_data_loader():
    logits = model(input_ids, token_type_ids)
    loss = criterion(logits, labels)
    loss.backward()
    optimizer.step()
    optimizer.clear_grad()

上面的代码给出使用预训练模型的简要示例,更完整详细的示例代码, 可以参考:使用预训练模型Fine-tune完成中文文本分类任务

  1. 加载数据集:PaddleNLP内置了多种数据集,用户可以一键导入所需的数据集。
  2. 加载预训练模型:PaddleNLP的预训练模型可以很容易地通过 from_pretrained() 方法加载。 第一个参数是汇总表中对应的 Pretrained Weight,可加载对应的预训练权重。 BertForSequenceClassification 初始化 __init__ 所需的其他参数,如 num_classes 等, 也是通过 from_pretrained() 传入。Tokenizer 使用同样的 from_pretrained 方法加载。
  3. 通过 Datasetmap 函数,使用 tokenizerdataset 从原始文本处理成模型的输入。
  4. 定义 BatchSamplerDataLoader,shuffle数据、组合Batch。
  5. 定义训练所需的优化器,loss函数等,就可以开始进行模型fine-tune任务。

Reference

  • 部分中文预训练模型来自: brightmart/albert_zh, ymcui/Chinese-BERT-wwm, huawei-noah/Pretrained-Language-Model/TinyBERT, ymcui/Chinese-XLNet, huggingface/xlnet_chinese_large, Knover/luge-dialogue, huawei-noah/Pretrained-Language-Model/NEZHA-PyTorch/ ZhuiyiTechnology/simbert
  • Lan, Zhenzhong, et al. "Albert: A lite bert for self-supervised learning of language representations." arXiv preprint arXiv:1909.11942 (2019).
  • Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
  • Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." arXiv preprint arXiv:2007.14062 (2020).
  • Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).
  • Clark, Kevin, et al. "Electra: Pre-training text encoders as discriminators rather than generators." arXiv preprint arXiv:2003.10555 (2020).
  • Sun, Yu, et al. "Ernie: Enhanced representation through knowledge integration." arXiv preprint arXiv:1904.09223 (2019).
  • Xiao, Dongling, et al. "Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation." arXiv preprint arXiv:2001.11314 (2020).
  • Xiao, Dongling, et al. "ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding." arXiv preprint arXiv:2010.12148 (2020).
  • Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.
  • Wei, Junqiu, et al. "NEZHA: Neural contextualized representation for chinese language understanding." arXiv preprint arXiv:1909.00204 (2019).
  • Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint arXiv:1907.11692 (2019).
  • Tian, Hao, et al. "SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis." arXiv preprint arXiv:2005.05635 (2020).
  • Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).
  • Jiao, Xiaoqi, et al. "Tinybert: Distilling bert for natural language understanding." arXiv preprint arXiv:1909.10351 (2019).
  • Bao, Siqi, et al. "Plato-2: Towards building an open-domain chatbot via curriculum learning." arXiv preprint arXiv:2006.16779 (2020).
  • Yang, Zhilin, et al. "Xlnet: Generalized autoregressive pretraining for language understanding." arXiv preprint arXiv:1906.08237 (2019).
  • Cui, Yiming, et al. "Pre-training with whole word masking for chinese bert." arXiv preprint arXiv:1906.08101 (2019).