随着深度学习的发展,NLP领域涌现了一大批高质量的Transformer类预训练模型,多次刷新各种NLP任务SOTA(State of the Art)。
PaddleNLP为用户提供了常用的 BERT
、ERNIE
、ALBERT
、RoBERTa
、XLNet
等经典结构预训练模型,
让开发者能够方便快捷应用各类Transformer预训练模型及其下游任务。
下表汇总了介绍了目前PaddleNLP支持的各类预训练模型以及对应预训练权重。我们目前提供了 70 种预训练的参数权重供用户使用, 其中包含了 34 种中文语言模型的预训练权重。
Model | Pretrained Weight | Language | Details of the model |
---|---|---|---|
ALBERT | albert-base-v1 |
English | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters ALBERT base model |
albert-large-v1 |
English | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters ALBERT large model | |
albert-xlarge-v1 |
English | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters ALBERT xlarge model | |
albert-xxlarge-v1 |
English | 12 repeating layers, 128 embedding, 4096-hidden, 64-heads, 223M parameters ALBERT xxlarge model | |
albert-base-v2 |
English | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters ALBERT base model (version2) | |
albert-large-v2 |
English | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 17M parameters ALBERT large model (version2) | |
albert-xlarge-v2 |
English | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 58M parameters ALBERT xlarge model (version2) | |
albert-xxlarge-v2 |
English | 12 repeating layers, 128 embedding, 4096-hidden, 64-heads, 223M parameters ALBERT xxlarge model (version2) | |
albert-chinese-tiny |
Chinese | 4 repeating layers, 128 embedding, 312-hidden, 12-heads, 4M parameters ALBERT tiny model (Chinese) | |
albert-chinese-small |
Chinese | 6 repeating layers, 128 embedding, 384-hidden, 12-heads, _M parameters ALBERT small model (Chinese) | |
albert-chinese-base |
Chinese | 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 12M parameters ALBERT base model (Chinese) | |
albert-chinese-large |
Chinese | 24 repeating layers, 128 embedding, 1024-hidden, 16-heads, 18M parameters ALBERT large model (Chinese) | |
albert-chinese-xlarge |
Chinese | 24 repeating layers, 128 embedding, 2048-hidden, 16-heads, 60M parameters ALBERT xlarge model (Chinese) | |
albert-chinese-xxlarge |
Chinese | 12 repeating layers, 128 embedding, 4096-hidden, 16-heads, 235M parameters ALBERT xxlarge model (Chinese) | |
BERT | bert-base-uncased |
English | 12-layer, 768-hidden, 12-heads, 110M parameters. Trained on lower-cased English text. |
bert-large-uncased |
English | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text. | |
bert-base-cased |
English | 12-layer, 768-hidden, 12-heads, 109M parameters. Trained on cased English text. | |
bert-large-cased |
English | 24-layer, 1024-hidden, 16-heads, 335M parameters. Trained on cased English text. | |
bert-base-multilingual-uncased |
Multilingual | 12-layer, 768-hidden, 12-heads, 168M parameters. Trained on lower-cased text in the top 102 languages with the largest Wikipedias. | |
bert-base-multilingual-cased |
Multilingual | 12-layer, 768-hidden, 12-heads, 179M parameters. Trained on cased text in the top 104 languages with the largest Wikipedias. | |
bert-base-chinese |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text. | |
bert-wwm-chinese |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text using Whole-Word-Masking. | |
bert-wwm-ext-chinese |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on cased Chinese Simplified and Traditional text using Whole-Word-Masking with extented data. | |
simbert-base-chinese |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on 22 million pairs of similar sentences crawed from Baidu Know. | |
BigBird | bigbird-base-uncased |
English | 12-layer, 768-hidden, 12-heads, _M parameters. Trained on lower-cased English text. |
DistilBert | distilbert-base-uncased |
English | 6-layer, 768-hidden,
12-heads, 66M parameters.
The DistilBERT model distilled from
the BERT model bert-base-uncased |
distilbert-base-cased |
English | 6-layer, 768-hidden,
12-heads, 66M parameters.
The DistilBERT model distilled from
the BERT model bert-base-cased |
|
ELECTRA | electra-small |
English | 12-layer, 768-hidden, 4-heads, _M parameters. Trained on lower-cased English text. |
electra-base |
English | 12-layer, 768-hidden, 12-heads, _M parameters. Trained on lower-cased English text. | |
electra-large |
English | 24-layer, 1024-hidden, 16-heads, _M parameters. Trained on lower-cased English text. | |
chinese-electra-small |
Chinese | 12-layer, 768-hidden, 4-heads, _M parameters. Trained on Chinese text. | |
chinese-electra-base |
Chinese | 12-layer, 768-hidden, 12-heads, _M parameters. Trained on Chinese text. | |
ERNIE | ernie-1.0 |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text. |
ernie-tiny |
Chinese | 3-layer, 1024-hidden, 16-heads, _M parameters. Trained on Chinese text. | |
ernie-2.0-en |
English | 12-layer, 768-hidden, 12-heads, 103M parameters. Trained on lower-cased English text. | |
ernie-2.0-large-en |
English | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text. | |
ERNIE-DOC | ernie-doc-base-zh |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text. |
ernie-doc-base-en |
English | 12-layer, 768-hidden, 12-heads, 103M parameters. Trained on lower-cased English text. | |
ERNIE-GEN | ernie-gen-base-en |
English | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on lower-cased English text. |
ernie-gen-large-en |
English | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text. | |
ernie-gen-large-en-430g |
English | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on lower-cased English text. with extended data (430 GB). | |
ERNIE-GRAM | ernie-gram-zh |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text. |
GPT | gpt-cpm-large-cn |
Chinese | 32-layer, 2560-hidden, 32-heads, 2.6B parameters. Trained on Chinese text. |
gpt-cpm-small-cn-distill |
Chinese | 12-layer, 768-hidden,
12-heads, 109M parameters.
The model distilled from
the GPT model gpt-cpm-large-cn |
|
gpt2-medium-en |
English | 24-layer, 1024-hidden, 16-heads, 345M parameters. Trained on English text. | |
NeZha | nezha-base-chinese |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text. |
nezha-large-chinese |
Chinese | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on Chinese text. | |
nezha-base-wwm-chinese |
Chinese | 12-layer, 768-hidden, 16-heads, 108M parameters. Trained on Chinese text. | |
nezha-large-wwm-chinese |
Chinese | 24-layer, 1024-hidden, 16-heads, 336M parameters. Trained on Chinese text. | |
RoBERTa | roberta-wwm-ext |
Chinese | 12-layer, 768-hidden, 12-heads, 102M parameters. Trained on English Text using Whole-Word-Masking with extended data. |
roberta-wwm-ext-large |
Chinese | 24-layer, 1024-hidden, 16-heads, 325M parameters. Trained on English Text using Whole-Word-Masking with extended data. | |
rbt3 |
Chinese | 3-layer, 768-hidden, 12-heads, 38M parameters. | |
rbtl3 |
Chinese | 3-layer, 1024-hidden, 16-heads, 61M parameters. | |
SKEP | skep_ernie_1.0_large_ch |
Chinese | 24-layer, 1024-hidden,
16-heads, 336M parameters.
Trained using the Erine model
ernie_1.0 |
skep_ernie_2.0_large_en |
English | 24-layer, 1024-hidden,
16-heads, 336M parameters.
Trained using the Erine model
ernie_2.0_large_en |
|
skep_roberta_large_en |
English | 24-layer, 1024-hidden,
16-heads, 355M parameters.
Trained using the RoBERTa model
roberta_large_en |
|
TinyBert | tinybert-4l-312d |
English | 4-layer, 312-hidden,
12-heads, 14.5M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
tinybert-6l-768d |
English | 6-layer, 768-hidden,
12-heads, 67M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
|
tinybert-4l-312d-v2 |
English | 4-layer, 312-hidden,
12-heads, 14.5M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
|
tinybert-6l-768d-v2 |
English | 6-layer, 768-hidden,
12-heads, 67M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
|
tinybert-4l-312d-zh |
Chinese | 4-layer, 312-hidden,
12-heads, 14.5M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
|
tinybert-6l-768d-zh |
Chinese | 6-layer, 768-hidden,
12-heads, 67M parameters.
The TinyBert model distilled from
the BERT model bert-base-uncased |
|
UnifiedTransformer | unified_transformer-12L-cn |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text. |
unified_transformer-12L-cn-luge |
Chinese | 12-layer, 768-hidden, 12-heads, 108M parameters. Trained on Chinese text (LUGE.ai). | |
plato-mini |
Chinese | 6-layer, 768-hidden, 12-heads, 66M parameters. Trained on Chinese text. | |
XLNet | xlnet-base-cased |
English | 12-layer, 768-hidden, 12-heads, 110M parameters. XLNet English model |
xlnet-large-cased |
English | 24-layer, 1024-hidden, 16-heads, 340M parameters. XLNet Large English model | |
chinese-xlnet-base |
Chinese | 12-layer, 768-hidden, 12-heads, 117M parameters. XLNet Chinese model | |
chinese-xlnet-mid |
Chinese | 24-layer, 768-hidden, 12-heads, 209M parameters. XLNet Medium Chinese model | |
chinese-xlnet-large |
Chinese | 24-layer, 1024-hidden, 16-heads, _M parameters. XLNet Large Chinese model |
Model | Sequence Classification | Token Classification | Question Answering | Text Generation |
---|---|---|---|---|
ALBERT | ✅ | ✅ | ✅ | ❌ |
BERT | ✅ | ✅ | ✅ | ❌ |
BigBird | ✅ | ❌ | ❌ | ❌ |
DistilBert | ✅ | ✅ | ✅ | ❌ |
ELECTRA | ✅ | ✅ | ❌ | ❌ |
ERNIE | ✅ | ✅ | ✅ | ❌ |
ERNIE-DOC | ✅ | ✅ | ✅ | ❌ |
ERNIE-GEN | ❌ | ❌ | ❌ | ✅ |
ERNIE-GRAM | ✅ | ✅ | ✅ | ❌ |
GPT | ❌ | ❌ | ❌ | ✅ |
NeZha | ✅ | ✅ | ✅ | ❌ |
RoBERTa | ✅ | ✅ | ✅ | ❌ |
SKEP | ✅ | ✅ | ❌ | ❌ |
TinyBert | ✅ | ❌ | ❌ | ❌ |
UnifiedTransformer | ❌ | ❌ | ❌ | ✅ |
XLNet | ✅ | ✅ | ❌ | ❌ |
PaddleNLP Transformer API在提丰富预训练模型的同时,也降低了用户的使用门槛。 只需十几行代码,用户即可完成模型加载和下游任务Fine-tuning。
from functools import partial
import numpy as np
import paddle
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer
train_ds = load_dataset("chnsenticorp", splits=["train"])
model = BertForSequenceClassification.from_pretrained("bert-wwm-chinese", num_classes=len(train_ds.label_list))
tokenizer = BertTokenizer.from_pretrained("bert-wwm-chinese")
def convert_example(example, tokenizer):
encoded_inputs = tokenizer(text=example["text"], max_seq_len=512, pad_to_max_seq_len=True)
return tuple([np.array(x, dtype="int64") for x in [
encoded_inputs["input_ids"], encoded_inputs["token_type_ids"], [example["label"]]]])
train_ds = train_ds.map(partial(convert_example, tokenizer=tokenizer))
batch_sampler = paddle.io.BatchSampler(dataset=train_ds, batch_size=8, shuffle=True)
train_data_loader = paddle.io.DataLoader(dataset=train_ds, batch_sampler=batch_sampler, return_list=True)
optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters())
criterion = paddle.nn.loss.CrossEntropyLoss()
for input_ids, token_type_ids, labels in train_data_loader():
logits = model(input_ids, token_type_ids)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
optimizer.clear_grad()
上面的代码给出使用预训练模型的简要示例,更完整详细的示例代码, 可以参考:使用预训练模型Fine-tune完成中文文本分类任务
- 加载数据集:PaddleNLP内置了多种数据集,用户可以一键导入所需的数据集。
- 加载预训练模型:PaddleNLP的预训练模型可以很容易地通过
from_pretrained()
方法加载。 第一个参数是汇总表中对应的Pretrained Weight
,可加载对应的预训练权重。BertForSequenceClassification
初始化__init__
所需的其他参数,如num_classes
等, 也是通过from_pretrained()
传入。Tokenizer
使用同样的from_pretrained
方法加载。 - 通过
Dataset
的map
函数,使用tokenizer
将dataset
从原始文本处理成模型的输入。 - 定义
BatchSampler
和DataLoader
,shuffle数据、组合Batch。 - 定义训练所需的优化器,loss函数等,就可以开始进行模型fine-tune任务。
- 部分中文预训练模型来自: brightmart/albert_zh, ymcui/Chinese-BERT-wwm, huawei-noah/Pretrained-Language-Model/TinyBERT, ymcui/Chinese-XLNet, huggingface/xlnet_chinese_large, Knover/luge-dialogue, huawei-noah/Pretrained-Language-Model/NEZHA-PyTorch/ ZhuiyiTechnology/simbert
- Lan, Zhenzhong, et al. "Albert: A lite bert for self-supervised learning of language representations." arXiv preprint arXiv:1909.11942 (2019).
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
- Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." arXiv preprint arXiv:2007.14062 (2020).
- Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).
- Clark, Kevin, et al. "Electra: Pre-training text encoders as discriminators rather than generators." arXiv preprint arXiv:2003.10555 (2020).
- Sun, Yu, et al. "Ernie: Enhanced representation through knowledge integration." arXiv preprint arXiv:1904.09223 (2019).
- Xiao, Dongling, et al. "Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation." arXiv preprint arXiv:2001.11314 (2020).
- Xiao, Dongling, et al. "ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding." arXiv preprint arXiv:2010.12148 (2020).
- Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.
- Wei, Junqiu, et al. "NEZHA: Neural contextualized representation for chinese language understanding." arXiv preprint arXiv:1909.00204 (2019).
- Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint arXiv:1907.11692 (2019).
- Tian, Hao, et al. "SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis." arXiv preprint arXiv:2005.05635 (2020).
- Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).
- Jiao, Xiaoqi, et al. "Tinybert: Distilling bert for natural language understanding." arXiv preprint arXiv:1909.10351 (2019).
- Bao, Siqi, et al. "Plato-2: Towards building an open-domain chatbot via curriculum learning." arXiv preprint arXiv:2006.16779 (2020).
- Yang, Zhilin, et al. "Xlnet: Generalized autoregressive pretraining for language understanding." arXiv preprint arXiv:1906.08237 (2019).
- Cui, Yiming, et al. "Pre-training with whole word masking for chinese bert." arXiv preprint arXiv:1906.08101 (2019).