From 908bf935f747112a1eeb7661fc91b10a863ccf04 Mon Sep 17 00:00:00 2001 From: Dmitry Kurtaev Date: Sat, 18 Apr 2020 19:42:48 +0300 Subject: [PATCH] Flexible inputs for OpenVINO IR models --- modules/dnn/src/dnn.cpp | 2 ++ modules/dnn/src/ie_ngraph.cpp | 7 ++++++ modules/dnn/src/ie_ngraph.hpp | 2 ++ modules/dnn/src/op_inf_engine.cpp | 7 ++++++ modules/dnn/src/op_inf_engine.hpp | 2 ++ modules/dnn/test/test_misc.cpp | 42 +++++++++++++++++++++++++++++++ 6 files changed, 62 insertions(+) diff --git a/modules/dnn/src/dnn.cpp b/modules/dnn/src/dnn.cpp index a7b274286fb5..f8a3dcab9b44 100644 --- a/modules/dnn/src/dnn.cpp +++ b/modules/dnn/src/dnn.cpp @@ -1629,6 +1629,7 @@ struct Net::Impl Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); + ieNode->net->reset(); for (it = layers.begin(); it != layers.end(); ++it) { @@ -1930,6 +1931,7 @@ struct Net::Impl Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); + ieNode->net->reset(); for (it = layers.begin(); it != layers.end(); ++it) { diff --git a/modules/dnn/src/ie_ngraph.cpp b/modules/dnn/src/ie_ngraph.cpp index e3f0966ab4b5..05e82052516e 100644 --- a/modules/dnn/src/ie_ngraph.cpp +++ b/modules/dnn/src/ie_ngraph.cpp @@ -780,6 +780,13 @@ void forwardNgraph(const std::vector >& outBlobsWrappers, ieNode->net->forward(outBlobsWrappers, isAsync); } +void InfEngineNgraphNet::reset() +{ + allBlobs.clear(); + infRequests.clear(); + isInit = false; +} + void InfEngineNgraphNet::addBlobs(const std::vector >& ptrs) { auto wrappers = ngraphWrappers(ptrs); diff --git a/modules/dnn/src/ie_ngraph.hpp b/modules/dnn/src/ie_ngraph.hpp index 3058178cbe33..efbdafa7d904 100644 --- a/modules/dnn/src/ie_ngraph.hpp +++ b/modules/dnn/src/ie_ngraph.hpp @@ -52,6 +52,8 @@ class InfEngineNgraphNet void createNet(Target targetId); void setNodePtr(std::shared_ptr* ptr); + + void reset(); private: void release(); int getNumComponents(); diff --git a/modules/dnn/src/op_inf_engine.cpp b/modules/dnn/src/op_inf_engine.cpp index 047292fda8bd..5f3af4658ef7 100644 --- a/modules/dnn/src/op_inf_engine.cpp +++ b/modules/dnn/src/op_inf_engine.cpp @@ -891,6 +891,13 @@ bool InfEngineBackendNet::isInitialized() #endif } +void InfEngineBackendNet::reset() +{ + allBlobs.clear(); + infRequests.clear(); + isInit = false; +} + void InfEngineBackendNet::addBlobs(const std::vector >& ptrs) { auto wrappers = infEngineWrappers(ptrs); diff --git a/modules/dnn/src/op_inf_engine.hpp b/modules/dnn/src/op_inf_engine.hpp index a2008ec4b960..a256989f967f 100644 --- a/modules/dnn/src/op_inf_engine.hpp +++ b/modules/dnn/src/op_inf_engine.hpp @@ -112,6 +112,8 @@ class InfEngineBackendNet void addBlobs(const std::vector >& ptrs); + void reset(); + private: InferenceEngine::Builder::Network netBuilder; diff --git a/modules/dnn/test/test_misc.cpp b/modules/dnn/test/test_misc.cpp index 9fc9fcadbdf3..1ca0d39672d0 100644 --- a/modules/dnn/test/test_misc.cpp +++ b/modules/dnn/test/test_misc.cpp @@ -760,6 +760,48 @@ TEST_P(Test_Model_Optimizer, readFromBuffer) normAssert(ref, actual, "", 0, 0); } +TEST_P(Test_Model_Optimizer, flexible_inputs) +{ + const Backend backendId = get<0>(GetParam()); + const Target targetId = get<1>(GetParam()); + + const std::string& model = findDataFile("dnn/layers/layer_convolution_fp16.bin"); + const std::string& proto = findDataFile("dnn/layers/layer_convolution_fp16.xml"); + + if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) + setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API); + else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) + setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); + else + FAIL() << "Unknown backendId"; + + Net net0 = readNet(model, proto); + net0.setPreferableTarget(targetId); + + Net net1 = readNet(model, proto); + net1.setPreferableTarget(targetId); + + // Generate inputs. + int blobSize0[] = {2, 6, 75, 113}; + Mat input0(4, &blobSize0[0], CV_32F); + randu(input0, 0, 255); + + net0.setInput(input0); + Mat ref = net0.forward().clone(); + + int blobSize1[] = {1, 6, 10, 9}; + Mat input1(4, &blobSize1[0], CV_32F); + randu(input1, 0, 255); + + net1.setInput(input1); + Mat out = net1.forward(); + EXPECT_NE(out.size, ref.size); + + net1.setInput(input0); + out = net1.forward(); + normAssert(ref, out, 0, 0); +} + INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer, dnnBackendsAndTargetsIE() );