forked from OpenBB-finance/OpenBB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsma.py
70 lines (60 loc) · 3.65 KB
/
sma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import numpy as np
from helper_funcs import *
import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
# ----------------------------------------------------- SMA -----------------------------------------------------
def simple_moving_average(l_args, s_ticker, s_interval, df_stock):
parser = argparse.ArgumentParser(prog='sma',
description=""" Moving Averages are used to smooth the data in an array to
help eliminate noise and identify trends. The Simple Moving Average is literally
the simplest form of a moving average. Each output value is the average of the
previous n values. In a Simple Moving Average, each value in the time period carries
equal weight, and values outside of the time period are not included in the average.
This makes it less responsive to recent changes in the data, which can be useful for
filtering out those changes. """)
parser.add_argument('-l', "--length", action="store", dest="n_length", type=check_positive, default=20,
help='length of SMA window.')
parser.add_argument('-d', "--days", action="store", dest="n_days", type=check_positive, default=5,
help='prediction days.')
try:
(ns_parser, l_unknown_args) = parser.parse_known_args(l_args)
if l_unknown_args:
print(f"The following args couldn't be interpreted: {l_unknown_args}\n")
return
# Prediction data
l_predictions = list()
for pred_day in range(ns_parser.n_days):
if pred_day < ns_parser.n_length:
l_ma_stock = df_stock['5. adjusted close'].values[-ns_parser.n_length+pred_day:]
else:
l_ma_stock = list()
l_predictions.append(np.mean(np.append(l_ma_stock, l_predictions)))
l_pred_days = get_next_stock_market_days(last_stock_day=df_stock['5. adjusted close'].index[-1], n_next_days=ns_parser.n_days)
df_pred = pd.Series(l_predictions, index=l_pred_days, name='Price')
# Plotting
plt.plot(df_stock.index, df_stock['5. adjusted close'], lw=2)
plt.title(f"{ns_parser.n_length} Moving Average on {s_ticker} - {ns_parser.n_days} days prediction")
plt.xlim(df_stock.index[0], get_next_stock_market_days(df_pred.index[-1], 1)[-1])
plt.xlabel('Time')
plt.ylabel('Share Price ($)')
plt.grid(b=True, which='major', color='#666666', linestyle='-')
plt.minorticks_on()
plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)
df_ma = df_stock['5. adjusted close'].rolling(window=ns_parser.n_length).mean()
plt.plot(df_ma.index, df_ma, lw=2, linestyle='--', c='tab:orange')
plt.plot([df_stock.index[-1], df_pred.index[0]], [df_stock['5. adjusted close'].values[-1], df_pred.values[0]], lw=1, c='tab:green', linestyle='--')
plt.plot(df_pred.index, df_pred, lw=2, c='tab:green')
plt.axvspan(df_stock.index[-1], df_pred.index[-1], facecolor='tab:orange', alpha=0.2)
xmin, xmax, ymin, ymax = plt.axis()
plt.vlines(df_stock.index[-1], ymin, ymax, linewidth=1, linestyle='--', color='k')
plt.show()
# Print prediction data
print("Predicted share price:")
df_pred = df_pred.apply(lambda x: f"{x:.2f} $")
print(df_pred.to_string())
print("")
except:
print("")