forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
180 lines (151 loc) · 5.92 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import collections
import ray
from ray.rllib.evaluation.rollout_metrics import RolloutMetrics
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimate
from ray.rllib.policy.policy import LEARNER_STATS_KEY
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.utils.memory import ray_get_and_free
logger = logging.getLogger(__name__)
@DeveloperAPI
def get_learner_stats(grad_info):
"""Return optimization stats reported from the policy.
Example:
>>> grad_info = evaluator.learn_on_batch(samples)
>>> print(get_stats(grad_info))
{"vf_loss": ..., "policy_loss": ...}
"""
if LEARNER_STATS_KEY in grad_info:
return grad_info[LEARNER_STATS_KEY]
multiagent_stats = {}
for k, v in grad_info.items():
if type(v) is dict:
if LEARNER_STATS_KEY in v:
multiagent_stats[k] = v[LEARNER_STATS_KEY]
return multiagent_stats
@DeveloperAPI
def collect_metrics(local_worker=None,
remote_workers=[],
to_be_collected=[],
timeout_seconds=180):
"""Gathers episode metrics from RolloutWorker instances."""
episodes, to_be_collected = collect_episodes(
local_worker,
remote_workers,
to_be_collected,
timeout_seconds=timeout_seconds)
metrics = summarize_episodes(episodes, episodes)
return metrics
@DeveloperAPI
def collect_episodes(local_worker=None,
remote_workers=[],
to_be_collected=[],
timeout_seconds=180):
"""Gathers new episodes metrics tuples from the given evaluators."""
if remote_workers:
pending = [
a.apply.remote(lambda ev: ev.get_metrics()) for a in remote_workers
] + to_be_collected
collected, to_be_collected = ray.wait(
pending, num_returns=len(pending), timeout=timeout_seconds * 1.0)
if pending and len(collected) == 0:
logger.warning(
"WARNING: collected no metrics in {} seconds".format(
timeout_seconds))
metric_lists = ray_get_and_free(collected)
else:
metric_lists = []
if local_worker:
metric_lists.append(local_worker.get_metrics())
episodes = []
for metrics in metric_lists:
episodes.extend(metrics)
return episodes, to_be_collected
@DeveloperAPI
def summarize_episodes(episodes, new_episodes):
"""Summarizes a set of episode metrics tuples.
Arguments:
episodes: smoothed set of episodes including historical ones
new_episodes: just the new episodes in this iteration
"""
episodes, estimates = _partition(episodes)
new_episodes, _ = _partition(new_episodes)
episode_rewards = []
episode_lengths = []
policy_rewards = collections.defaultdict(list)
custom_metrics = collections.defaultdict(list)
perf_stats = collections.defaultdict(list)
for episode in episodes:
episode_lengths.append(episode.episode_length)
episode_rewards.append(episode.episode_reward)
for k, v in episode.custom_metrics.items():
custom_metrics[k].append(v)
for k, v in episode.perf_stats.items():
perf_stats[k].append(v)
for (_, policy_id), reward in episode.agent_rewards.items():
if policy_id != DEFAULT_POLICY_ID:
policy_rewards[policy_id].append(reward)
if episode_rewards:
min_reward = min(episode_rewards)
max_reward = max(episode_rewards)
else:
min_reward = float("nan")
max_reward = float("nan")
avg_reward = np.mean(episode_rewards)
avg_length = np.mean(episode_lengths)
policy_reward_min = {}
policy_reward_mean = {}
policy_reward_max = {}
for policy_id, rewards in policy_rewards.copy().items():
policy_reward_min[policy_id] = np.min(rewards)
policy_reward_mean[policy_id] = np.mean(rewards)
policy_reward_max[policy_id] = np.max(rewards)
for k, v_list in custom_metrics.copy().items():
custom_metrics[k + "_mean"] = np.mean(v_list)
filt = [v for v in v_list if not np.isnan(v)]
if filt:
custom_metrics[k + "_min"] = np.min(filt)
custom_metrics[k + "_max"] = np.max(filt)
else:
custom_metrics[k + "_min"] = float("nan")
custom_metrics[k + "_max"] = float("nan")
del custom_metrics[k]
for k, v_list in perf_stats.copy().items():
perf_stats[k] = np.mean(v_list)
estimators = collections.defaultdict(lambda: collections.defaultdict(list))
for e in estimates:
acc = estimators[e.estimator_name]
for k, v in e.metrics.items():
acc[k].append(v)
for name, metrics in estimators.items():
for k, v_list in metrics.items():
metrics[k] = np.mean(v_list)
estimators[name] = dict(metrics)
return dict(
episode_reward_max=max_reward,
episode_reward_min=min_reward,
episode_reward_mean=avg_reward,
episode_len_mean=avg_length,
episodes_this_iter=len(new_episodes),
policy_reward_min=policy_reward_min,
policy_reward_max=policy_reward_max,
policy_reward_mean=policy_reward_mean,
custom_metrics=dict(custom_metrics),
sampler_perf=dict(perf_stats),
off_policy_estimator=dict(estimators))
def _partition(episodes):
"""Divides metrics data into true rollouts vs off-policy estimates."""
rollouts, estimates = [], []
for e in episodes:
if isinstance(e, RolloutMetrics):
rollouts.append(e)
elif isinstance(e, OffPolicyEstimate):
estimates.append(e)
else:
raise ValueError("Unknown metric type: {}".format(e))
return rollouts, estimates