forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add canny edge detection algorithm and modify sobel_filter (TheAlgori…
…thms#991) * add gaussian filter algorithm and lena.jpg * add img_convolve algorithm and sobel_filter * add canny edge detection algorithm and modify sobel_filter * format to avoid the backslashes
- Loading branch information
Showing
3 changed files
with
122 additions
and
8 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import cv2 | ||
import numpy as np | ||
from digital_image_processing.filters.convolve import img_convolve | ||
from digital_image_processing.filters.sobel_filter import sobel_filter | ||
|
||
PI = 180 | ||
|
||
|
||
def gen_gaussian_kernel(k_size, sigma): | ||
center = k_size // 2 | ||
x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center] | ||
g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) | ||
return g | ||
|
||
|
||
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): | ||
image_row, image_col = image.shape[0], image.shape[1] | ||
# gaussian_filter | ||
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4)) | ||
# get the gradient and degree by sobel_filter | ||
sobel_grad, sobel_theta = sobel_filter(gaussian_out) | ||
gradient_direction = np.rad2deg(sobel_theta) | ||
gradient_direction += PI | ||
|
||
dst = np.zeros((image_row, image_col)) | ||
|
||
""" | ||
Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels | ||
in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed. | ||
""" | ||
for row in range(1, image_row - 1): | ||
for col in range(1, image_col - 1): | ||
direction = gradient_direction[row, col] | ||
|
||
if ( | ||
0 <= direction < 22.5 | ||
or 15 * PI / 8 <= direction <= 2 * PI | ||
or 7 * PI / 8 <= direction <= 9 * PI / 8 | ||
): | ||
W = sobel_grad[row, col - 1] | ||
E = sobel_grad[row, col + 1] | ||
if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E: | ||
dst[row, col] = sobel_grad[row, col] | ||
|
||
elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8): | ||
SW = sobel_grad[row + 1, col - 1] | ||
NE = sobel_grad[row - 1, col + 1] | ||
if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE: | ||
dst[row, col] = sobel_grad[row, col] | ||
|
||
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8): | ||
N = sobel_grad[row - 1, col] | ||
S = sobel_grad[row + 1, col] | ||
if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S: | ||
dst[row, col] = sobel_grad[row, col] | ||
|
||
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8): | ||
NW = sobel_grad[row - 1, col - 1] | ||
SE = sobel_grad[row + 1, col + 1] | ||
if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE: | ||
dst[row, col] = sobel_grad[row, col] | ||
|
||
""" | ||
High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold | ||
value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high | ||
threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge | ||
pixel's value is smaller than the low threshold value, it will be suppressed. | ||
""" | ||
if dst[row, col] >= threshold_high: | ||
dst[row, col] = strong | ||
elif dst[row, col] <= threshold_low: | ||
dst[row, col] = 0 | ||
else: | ||
dst[row, col] = weak | ||
|
||
""" | ||
Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while | ||
noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected | ||
neighborhood, that weak edge point can be identified as one that should be preserved. | ||
""" | ||
for row in range(1, image_row): | ||
for col in range(1, image_col): | ||
if dst[row, col] == weak: | ||
if 255 in ( | ||
dst[row, col + 1], | ||
dst[row, col - 1], | ||
dst[row - 1, col], | ||
dst[row + 1, col], | ||
dst[row - 1, col - 1], | ||
dst[row + 1, col - 1], | ||
dst[row - 1, col + 1], | ||
dst[row + 1, col + 1], | ||
): | ||
dst[row, col] = strong | ||
else: | ||
dst[row, col] = 0 | ||
|
||
return dst | ||
|
||
|
||
if __name__ == '__main__': | ||
# read original image in gray mode | ||
lena = cv2.imread(r'../image_data/lena.jpg', 0) | ||
# canny edge detection | ||
canny_dst = canny(lena) | ||
cv2.imshow('canny', canny_dst) | ||
cv2.waitKey(0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters