Skip to content

Commit

Permalink
add canny edge detection algorithm and modify sobel_filter (TheAlgori…
Browse files Browse the repository at this point in the history
…thms#991)

* add gaussian filter algorithm and lena.jpg

* add img_convolve algorithm and sobel_filter

* add canny edge detection algorithm and modify sobel_filter

* format to avoid the backslashes
  • Loading branch information
lighttxu authored and poyea committed Jul 10, 2019
1 parent add1aef commit 34dee74
Show file tree
Hide file tree
Showing 3 changed files with 122 additions and 8 deletions.
Empty file.
107 changes: 107 additions & 0 deletions digital_image_processing/edge_detection/canny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import cv2
import numpy as np
from digital_image_processing.filters.convolve import img_convolve
from digital_image_processing.filters.sobel_filter import sobel_filter

PI = 180


def gen_gaussian_kernel(k_size, sigma):
center = k_size // 2
x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center]
g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
return g


def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
image_row, image_col = image.shape[0], image.shape[1]
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = np.rad2deg(sobel_theta)
gradient_direction += PI

dst = np.zeros((image_row, image_col))

"""
Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels
in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed.
"""
for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col]

if (
0 <= direction < 22.5
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
W = sobel_grad[row, col - 1]
E = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E:
dst[row, col] = sobel_grad[row, col]

elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
SW = sobel_grad[row + 1, col - 1]
NE = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE:
dst[row, col] = sobel_grad[row, col]

elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
N = sobel_grad[row - 1, col]
S = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S:
dst[row, col] = sobel_grad[row, col]

elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8):
NW = sobel_grad[row - 1, col - 1]
SE = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE:
dst[row, col] = sobel_grad[row, col]

"""
High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold
value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high
threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge
pixel's value is smaller than the low threshold value, it will be suppressed.
"""
if dst[row, col] >= threshold_high:
dst[row, col] = strong
elif dst[row, col] <= threshold_low:
dst[row, col] = 0
else:
dst[row, col] = weak

"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while
noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected
neighborhood, that weak edge point can be identified as one that should be preserved.
"""
for row in range(1, image_row):
for col in range(1, image_col):
if dst[row, col] == weak:
if 255 in (
dst[row, col + 1],
dst[row, col - 1],
dst[row - 1, col],
dst[row + 1, col],
dst[row - 1, col - 1],
dst[row + 1, col - 1],
dst[row - 1, col + 1],
dst[row + 1, col + 1],
):
dst[row, col] = strong
else:
dst[row, col] = 0

return dst


if __name__ == '__main__':
# read original image in gray mode
lena = cv2.imread(r'../image_data/lena.jpg', 0)
# canny edge detection
canny_dst = canny(lena)
cv2.imshow('canny', canny_dst)
cv2.waitKey(0)
23 changes: 15 additions & 8 deletions digital_image_processing/filters/sobel_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,18 @@ def sobel_filter(image):
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])

dst_x = img_convolve(image, kernel_x)
dst_y = img_convolve(image, kernel_y)
dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8)
degree = np.arctan2(dst_y, dst_x)
return dst, degree
dst_x = np.abs(img_convolve(image, kernel_x))
dst_y = np.abs(img_convolve(image, kernel_y))
# modify the pix within [0, 255]
dst_x = dst_x * 255/np.max(dst_x)
dst_y = dst_y * 255/np.max(dst_y)

dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y)))
dst_xy = dst_xy * 255/np.max(dst_xy)
dst = dst_xy.astype(np.uint8)

theta = np.arctan2(dst_y, dst_x)
return dst, theta


if __name__ == '__main__':
Expand All @@ -23,9 +30,9 @@ def sobel_filter(image):
# turn image in gray scale value
gray = cvtColor(img, COLOR_BGR2GRAY)

sobel, d = sobel_filter(gray)
sobel_grad, sobel_theta = sobel_filter(gray)

# show result images
imshow('sobel filter', sobel)
imshow('sobel degree', d)
imshow('sobel filter', sobel_grad)
imshow('sobel theta', sobel_theta)
waitKey(0)

0 comments on commit 34dee74

Please sign in to comment.