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Chapter 2

Gradient Descent
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The Algorithm

Get near to a minimum x? / close to the optimal value f(x?)?
(Assumptions: f : Rd → R convex, differentiable, has a global minimum x?)

Goal: Find x ∈ Rd such that
f(x)− f(x?) ≤ ε.

Note that there can be several global minima x?
1 6= x?

2 with f(x?
1) = f(x?

2).

Iterative Algorithm: choose x0 ∈ Rd.

xt+1 := xt − γ∇f(xt),

for timesteps t = 0, 1, . . . , and stepsize γ ≥ 0.
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f(x1, x2) := 2(x1 − 4)2 + 3(x2 − 3)2,x0 := (0, 0), γ := 0.1
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Vanilla analysis
How to bound f(xt)− f(x?) ?

I Abbreviate gt := ∇f(xt) (gradient descent: gt = (xt − xt+1)/γ).

g>t (xt − x?) =
1

γ
(xt − xt+1)

>(xt − x?).

I Apply 2v>w = ‖v‖2 + ‖w‖2 − ‖v−w‖2 to rewrite

g>t (xt−x?) =
1

2γ

(
‖xt−xt+1‖2 + ‖xt−x?‖2 − ‖xt+1−x?‖2

)
=

γ

2
‖gt‖2 +

1

2γ

(
‖xt−x?‖2 − ‖xt+1−x?‖2

)
I Sum this up over the first T iterations:

T−1∑
t=0

g>t (xt−x?) =
γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ

(
‖x0−x?‖2 − ‖xT−x?‖2

)
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Vanilla analysis II

Use first-order characterization of convexity: f(y) ≥ f(x) +∇f(x)>(y − x), ∀x,y

I with x = xt,y = x?:
f(xt)− f(x?) ≤ g>t (xt − x?)

giving
T−1∑
t=0

(
f(xt)− f(x?)

)
≤ γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2,

an upper bound for the average error f(xt)− f(x?) over the steps

I last iterate is not necessarily the best one

I stepsize is crucial
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Lipschitz convex functions: O(1/ε2) steps

Assume that all gradients of f are bounded in norm.

I Equivalent to f being Lipschitz (Theorem 1.9; Exercise 12).

I Rules out many interesting functions (for example, the “supermodel” f(x) = x2)

Theorem
Let f : Rd → R be convex and differentiable with a global minimum x?; furthermore,
suppose that ‖x0 − x?‖ ≤ R and ‖∇f(x)‖ ≤ B for all x. Choosing the stepsize

γ :=
R

B
√
T
,

gradient descent yields

1

T

T−1∑
t=0

f(xt)− f(x?) ≤ RB√
T
.
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Lipschitz convex functions: O(1/ε2) steps II

Proof.
I Plug ‖x0 − x?‖ ≤ R and ‖gt‖ ≤ B into Vanilla Analysis II:

T−1∑
t=0

(f(xt)− f(x?)) ≤ γ

2

T−1∑
t=0

‖gt‖2 +
1

2γ
‖x0 − x?‖2 ≤ γ

2
B2T +

1

2γ
R2.

I choose γ such that

q(γ) =
γ

2
B2T +

R2

2γ

is minimized.

I Solving q′(γ) = 0 yields the minimum γ = R
B
√
T

, and q(R/(B
√
T )) = RB

√
T .

I Dividing by T , the result follows.
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Lipschitz convex functions: O(1/ε2) steps III

T ≥ R2B2

ε2
⇒ average error ≤ RB√

T
≤ ε.

Advantages:

I dimension-independent (no d in the bound)!

I holds for both average, or best iterate

In Practice:
What if we don’t know R and B? → Exercise 15 (having to know R can’t be avoided)
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Smooth functions

“Not too curved”

Definition
Let f : dom(f)→ R be differentiable, X ⊆ dom(f), L ∈ R+. f is called smooth
(with parameter L) over X if

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖2, ∀x,y ∈ X.

f smooth :⇔ f smooth over Rd.

Definition does not require convexity (useful later)
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Smooth functions II

Smoothness: For any x, the graph of f is below a not too steep tangent paraboloid at
(x, f(x)):

x y

f(y)

f(x) +∇f(x)>(y − x)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2
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Smooth functions III

I In general: quadratic functions are smooth (Exercise 13).

I Operations that preserve smoothness (the same that preserve convexity):

Lemma (Exercise 16)

(i) Let f1, f2, . . . , fm be functions that are smooth with parameters L1, L2, . . . , Lm,
and let λ1, λ2, . . . , λm ∈ R+. Then the function f :=

∑m
i=1 λifi is smooth with

parameter
∑m

i=1 λiLi.

(ii) Let f be smooth with parameter L, and let g(x) = Ax+ b, for A ∈ Rd×m and
b ∈ Rd. Then the function f ◦ g is smooth with parameter L‖A‖2, where is ‖A‖
is the spectral norm of A (Definition 1.2).
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Smooth vs Lipschitz

I Bounded gradients ⇔ Lipschitz continuity of f

I Smoothness ⇔ Lipschitz continuity of ∇f (in the convex case).

Lemma
Let f : Rd → R be convex and differentiable. The following two statements are
equivalent.

(i) f is smooth with parameter L.

(ii) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x,y ∈ Rd.

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.
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Sufficient decrease

Lemma
Let f : Rd → R be differentiable and smooth with parameter L. With stepsize

γ :=
1

L
,

gradient descent satisfies

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2, t ≥ 0.

Remark
More specifically, this already holds if f is smooth with parameter L over the line
segment connecting xt and xt+1.
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Sufficient decrease II

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2.

Proof.
Use smoothness and definition of gradient descent (xt+1 − xt = −∇f(xt)/L):

f(xt+1) ≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

L

2
‖xt − xt+1‖2

= f(xt)−
1

L
‖∇f(xt)‖2 +

1

2L
‖∇f(xt)‖2

= f(xt)−
1

2L
‖∇f(xt)‖2.
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Smooth convex functions: O(1/ε) steps

Theorem
Let f : Rd → R be convex and differentiable with a global minimum x?; furthermore,
suppose that f is smooth with parameter L. Choosing stepsize

γ :=
1

L
,

gradient descent yields

f(xT )− f(x?) ≤ L

2T
‖x0 − x?‖2, T > 0.
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Smooth convex functions: O(1/ε) steps II

f(xT )− f(x?) ≤ L

2T
‖x0 − x?‖2, T > 0.

Proof.
Vanilla Analysis II:

T−1∑
t=0

(
f(xt)− f(x?)

)
≤ γ

2

T−1∑
t=0

‖∇f(xt)‖2 +
1

2γ
‖x0 − x?‖2.

This time, we can bound the squared gradients by sufficient decrease:

1

2L

T−1∑
t=0

‖∇f(xt)‖2 ≤
T−1∑
t=0

(f(xt)− f(xt+1)) = f(x0)− f(xT ).
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Smooth convex functions: O(1/ε) steps III
Putting it together with γ = 1/L:

T−1∑
t=0

(f(xt)− f(x?)) ≤ 1

2L

T−1∑
t=0

‖∇f(xt)‖2 +
L

2
‖x0 − x?‖2

≤ f(x0)− f(xT ) +
L

2
‖x0 − x?‖2.

Rewriting:
T∑
t=1

(f(xt)− f(x?)) ≤ L

2
‖x0 − x?‖2.

As last iterate is the best (sufficient decrease!):

f(xT )− f(x?) ≤ 1

T

(
T∑
t=1

(f(xt)− f(x?))

)
≤ L

2T
‖x0 − x?‖2.
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Smooth convex functions: O(1/ε) steps IV

R2 := ‖x0 − x?‖2.

T ≥ R2L

2ε
⇒ error ≤ L

2T
R2 ≤ ε.

I 50 ·R2L iterations for error 0.01 . . .

I . . . as opposed to 10, 000 ·R2B2 in the Lipschitz case

In Practice:
What if we don’t know the smoothness parameter L?

→ Exercise 17
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