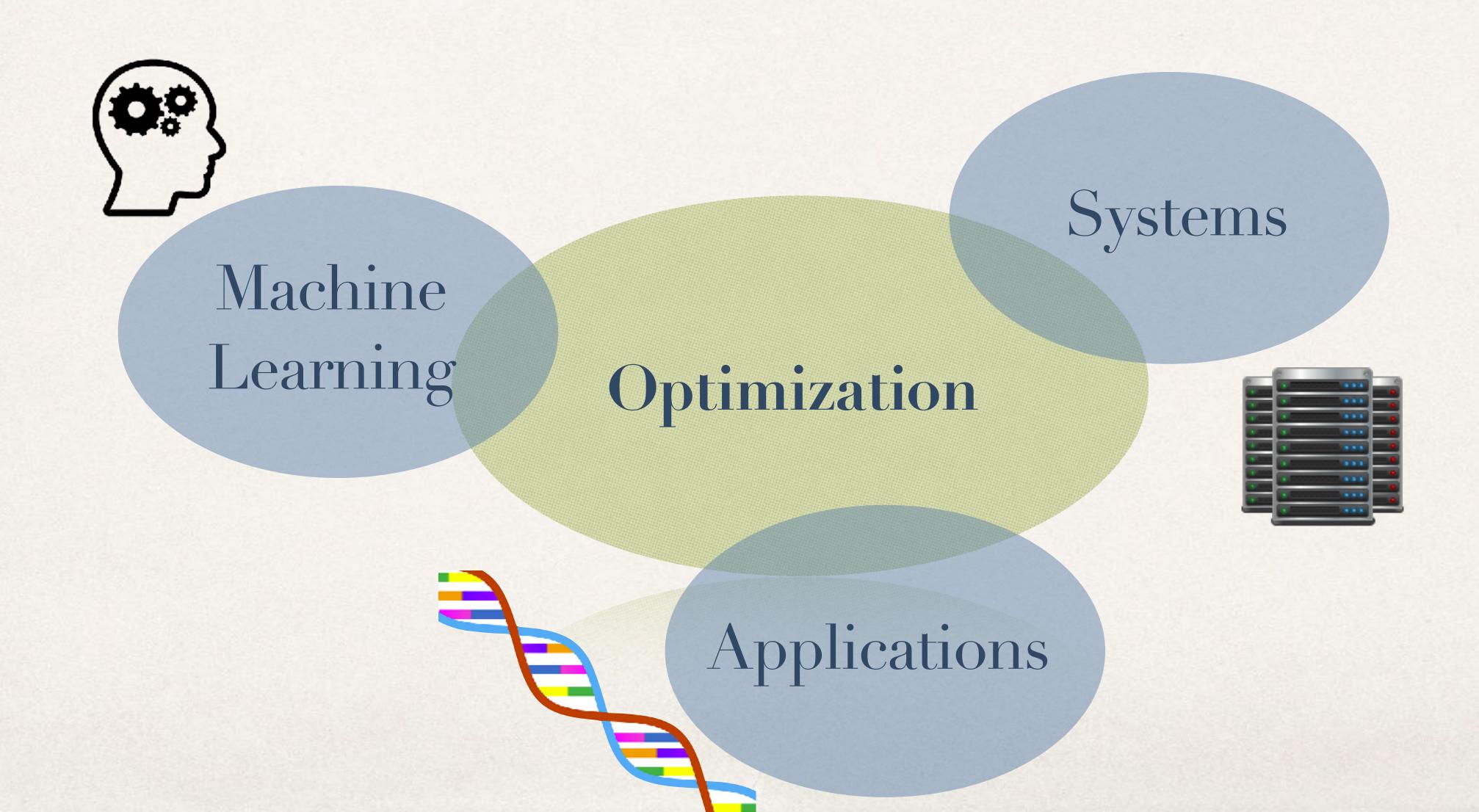
Optimization

for Machine Learning in Practice I

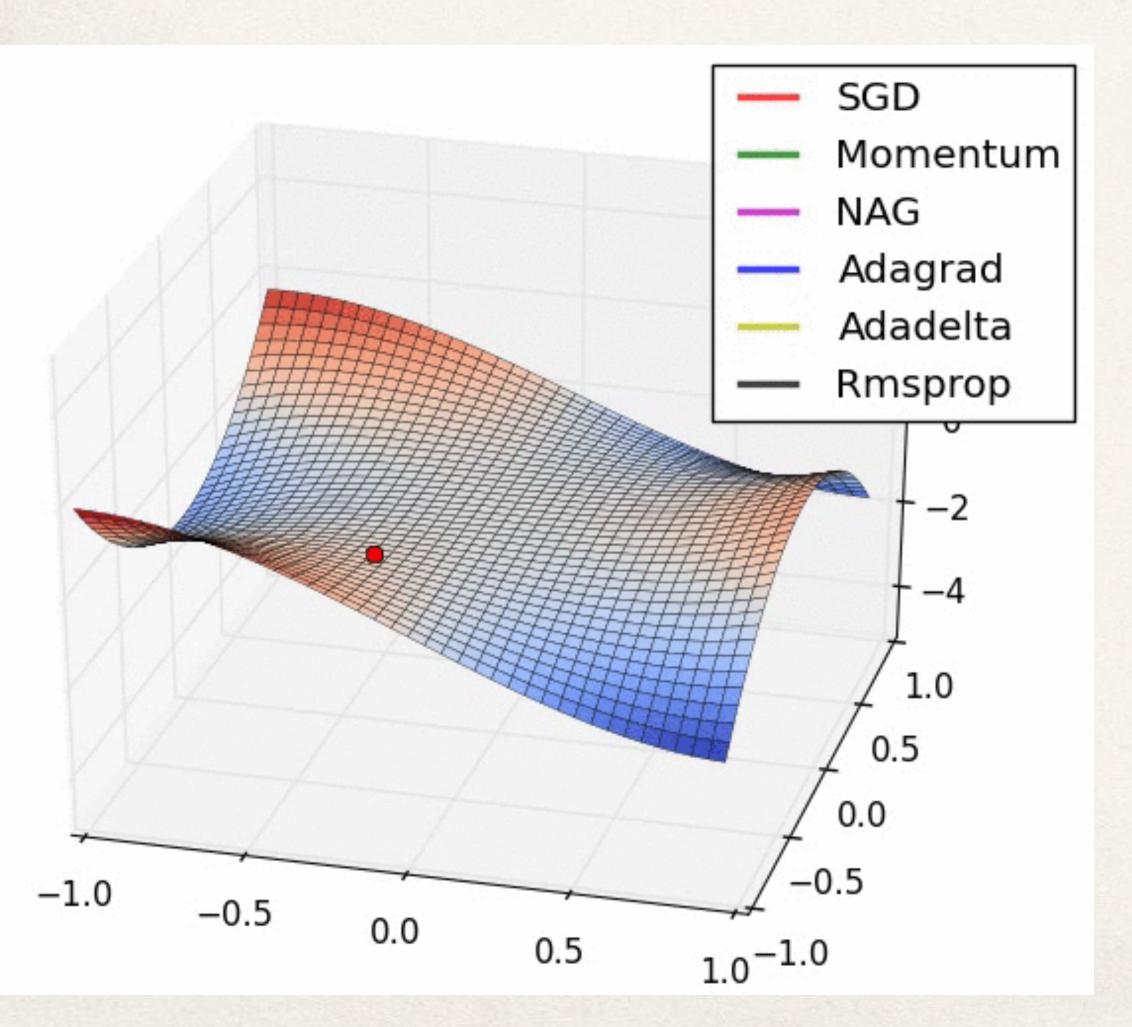
Martin Jaggi

Machine Learning and Optimization Laboratory mlo.epfl.ch

Where are we?



Practical comparison of algorithms



SGD Moment NAG Adagrad Adadelt Rmspro

https://imgur.com/a/Hqolp#2dKCQHh

Trends - General

- Custom AI hardware & systems
- * Federated or decentralized training
- * Privacy
- * Interpretability
- trust, fairness and robustness in ML
 (e.g. robust & secure against adversaries)

Optimization is a key element of most above topics

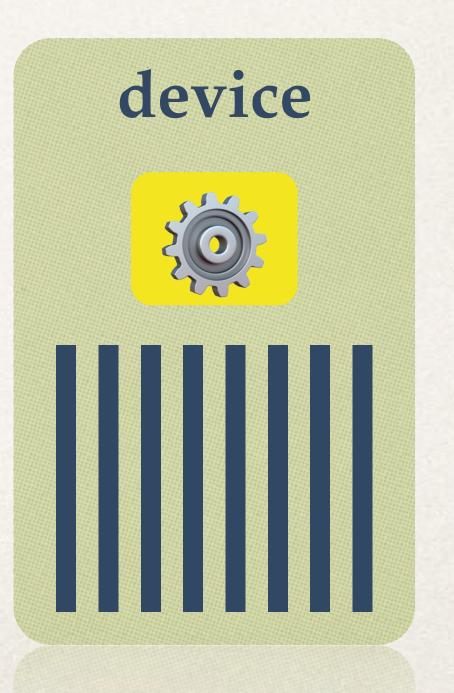
ML Training

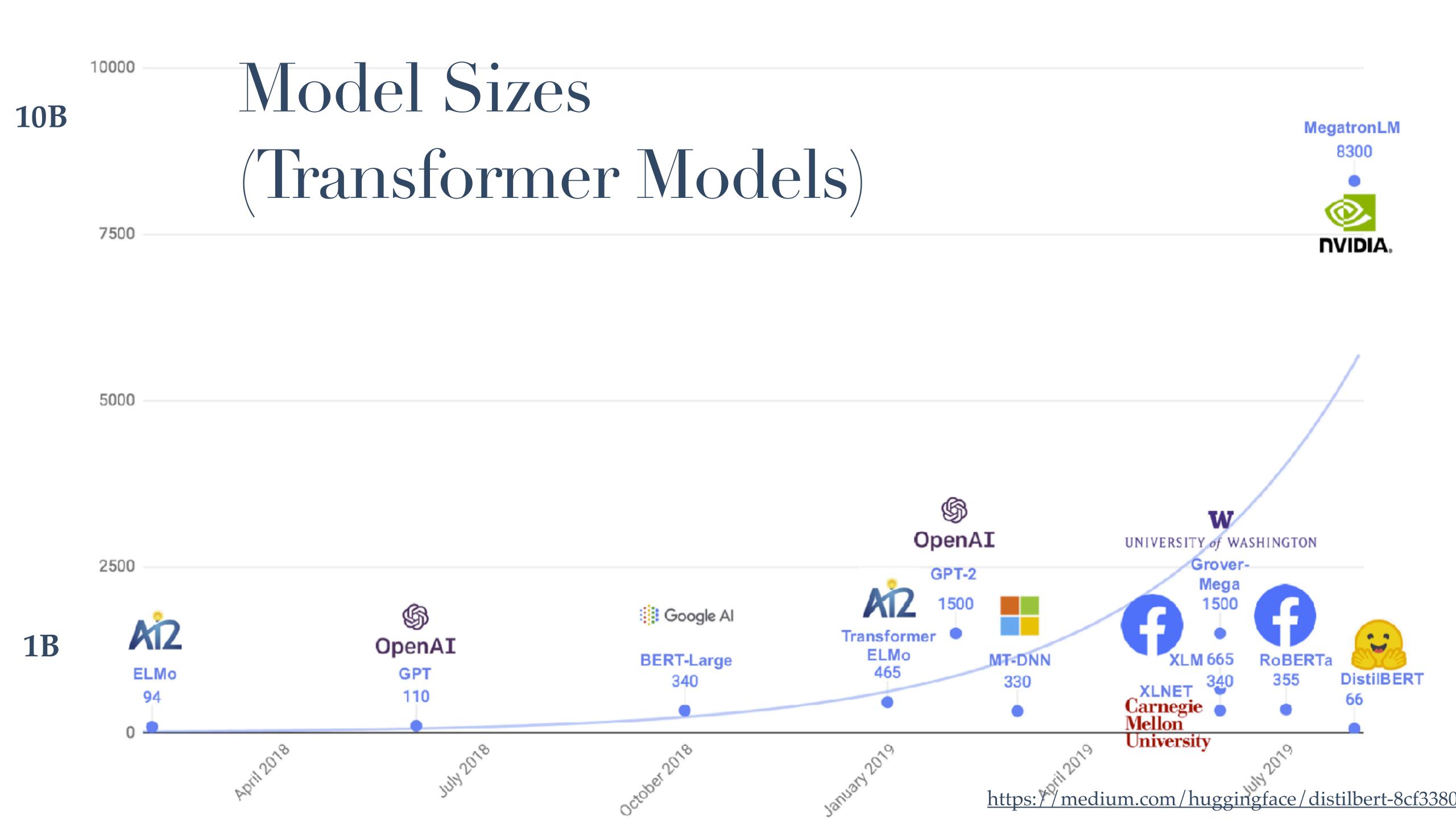
$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{|data|} \sum_{i \in data} f_i(\mathbf{x})$$

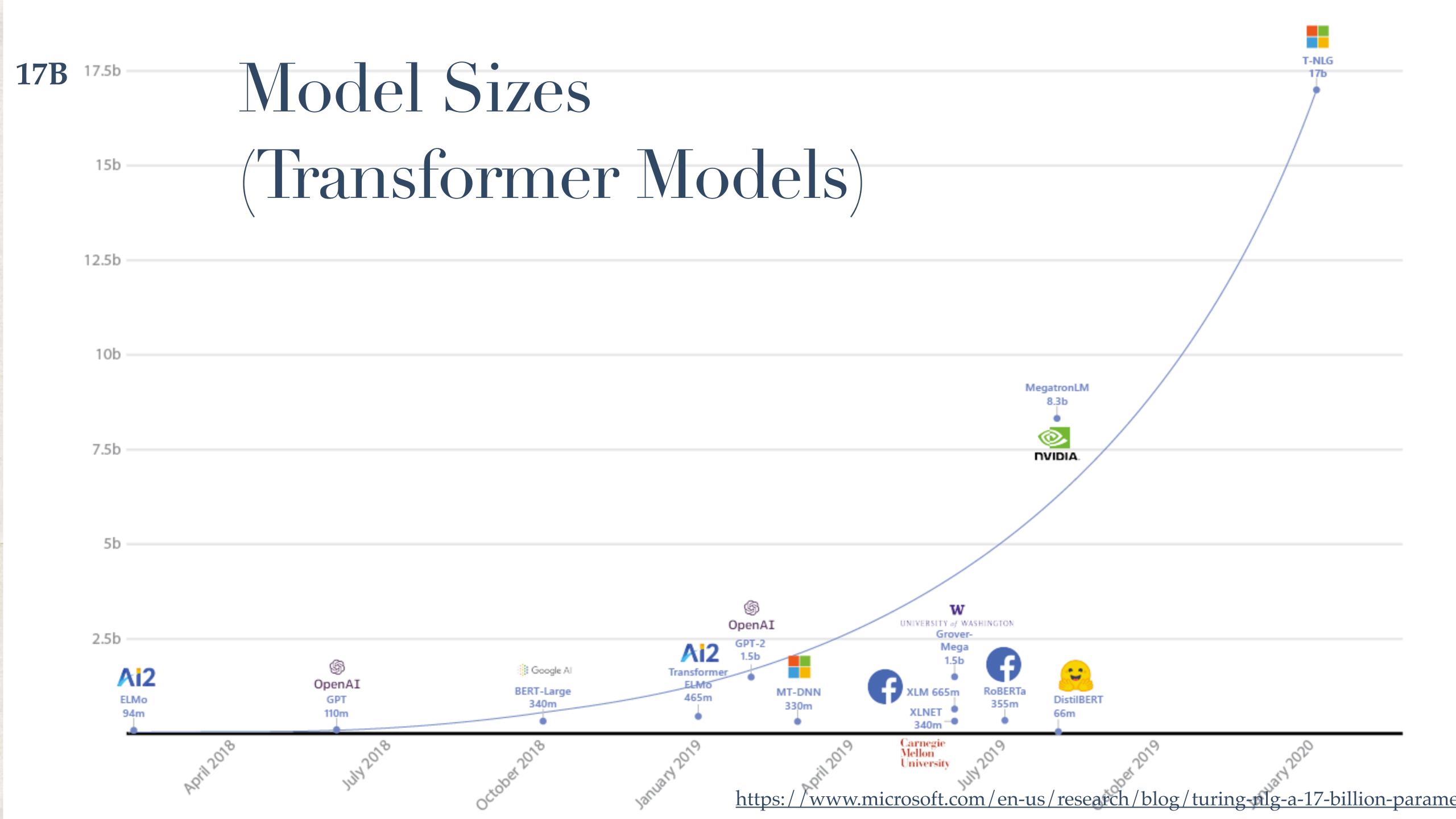
Training algorithms: SGD-based

 $i_t \sim \text{Uniform}(1, |data|)$

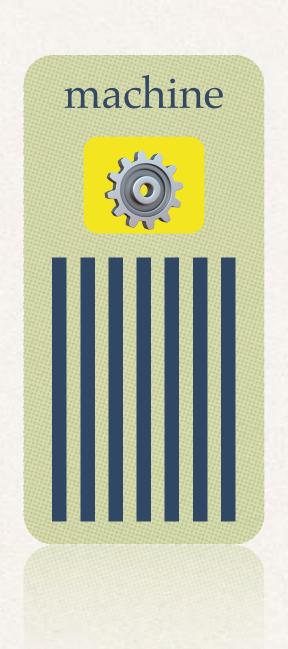
$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_t \nabla f_{i_t}(\mathbf{x}_t)$$



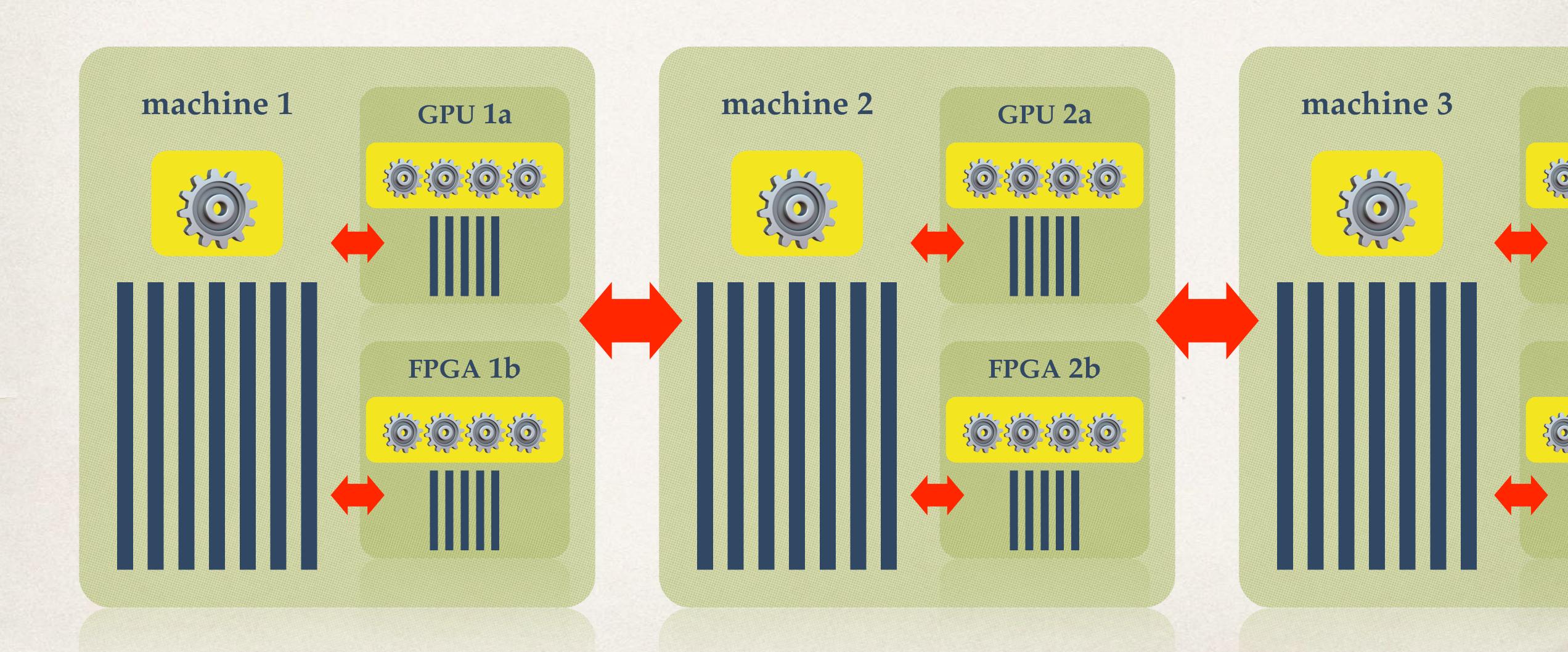




Systems ...then



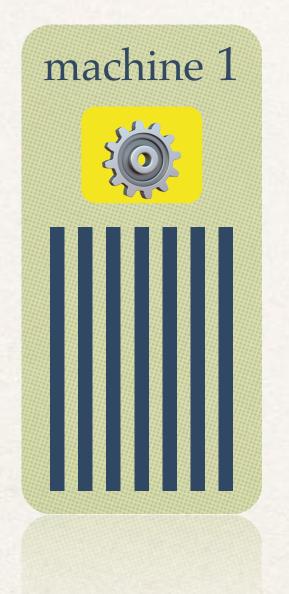
Systems ...now

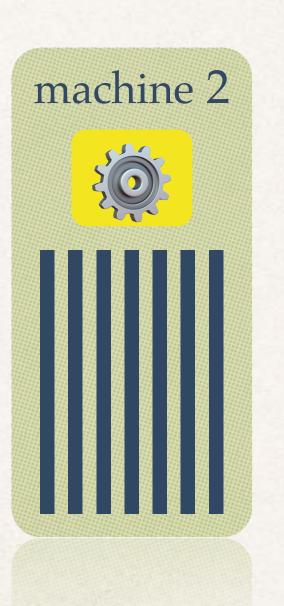


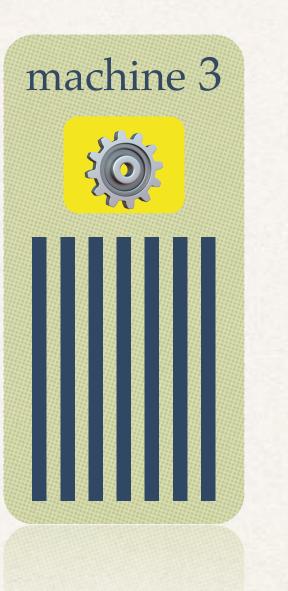
What are the fundamental limits of parallelizing the training of neural networks?

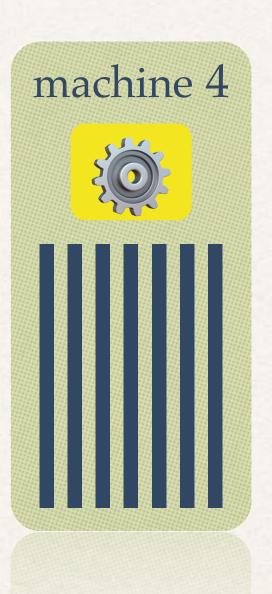
Parallel & Distributed Training

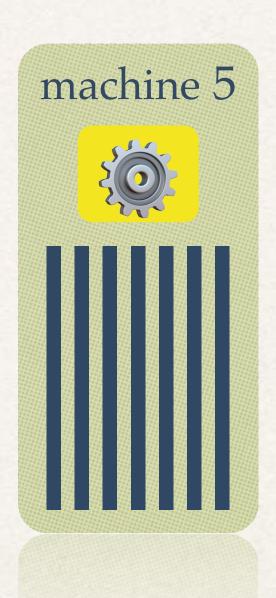
Distribute compute & memory across many devices



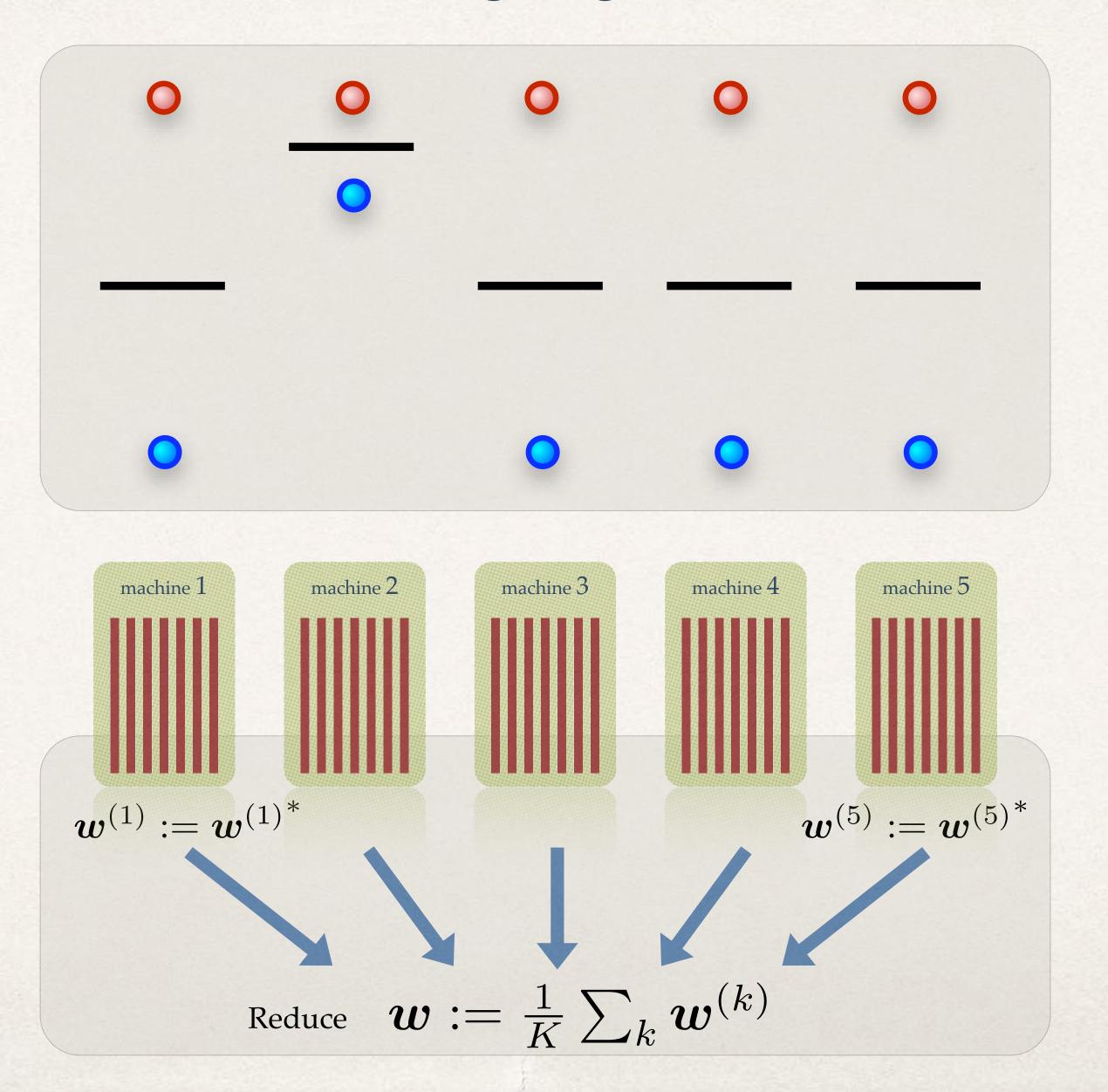




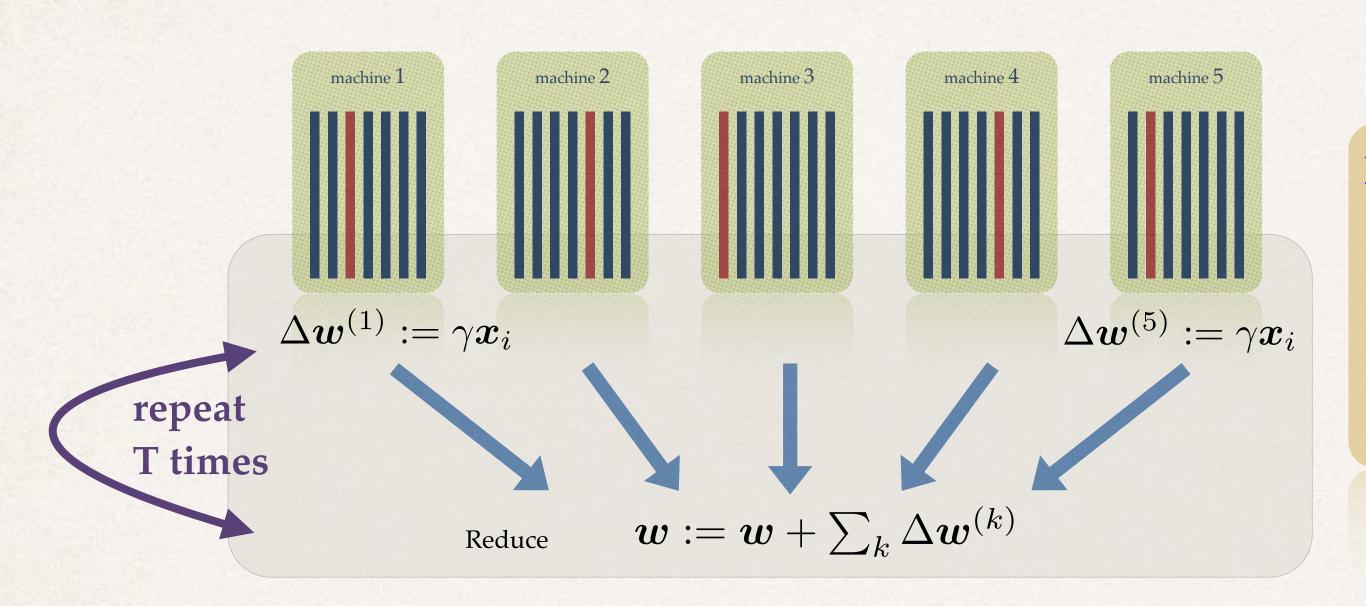




One-Shot Averaging Does Not Work

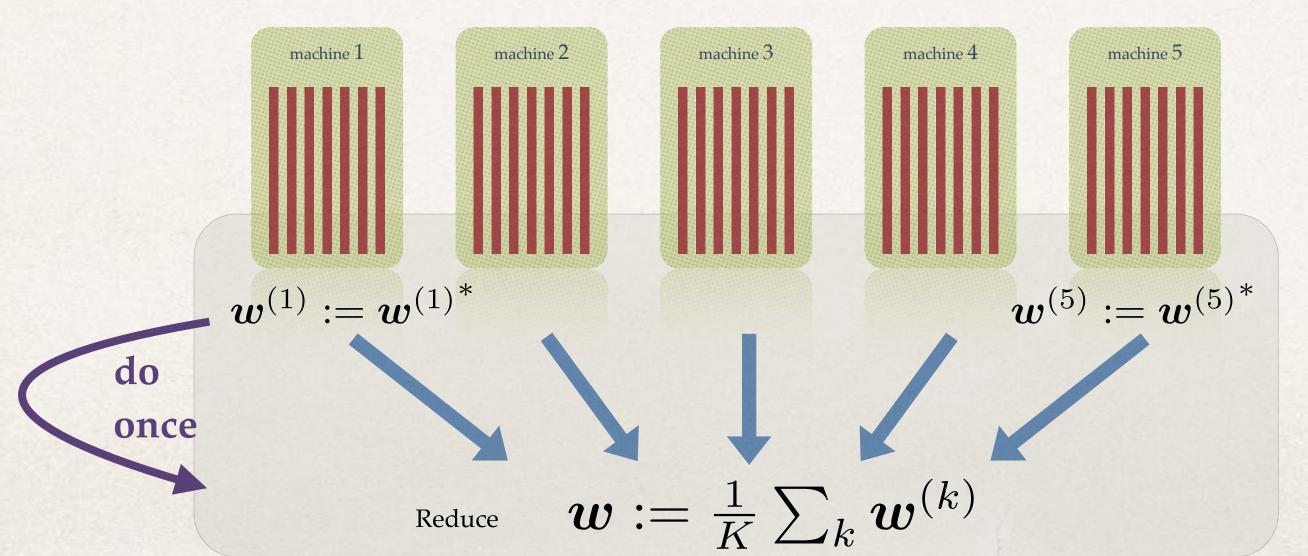


Communication: Always / Never



Naive Distributed SGD

"always communicate"



One-Shot Averaged Distributed Optimization

local datapoints read: T
communications: 1
convergence: **

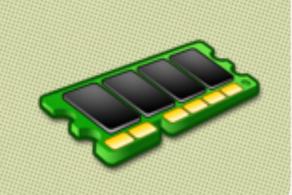
"never communicate"

The Cost of Communication

 $oldsymbol{v} \in \mathbb{R}^{100}$

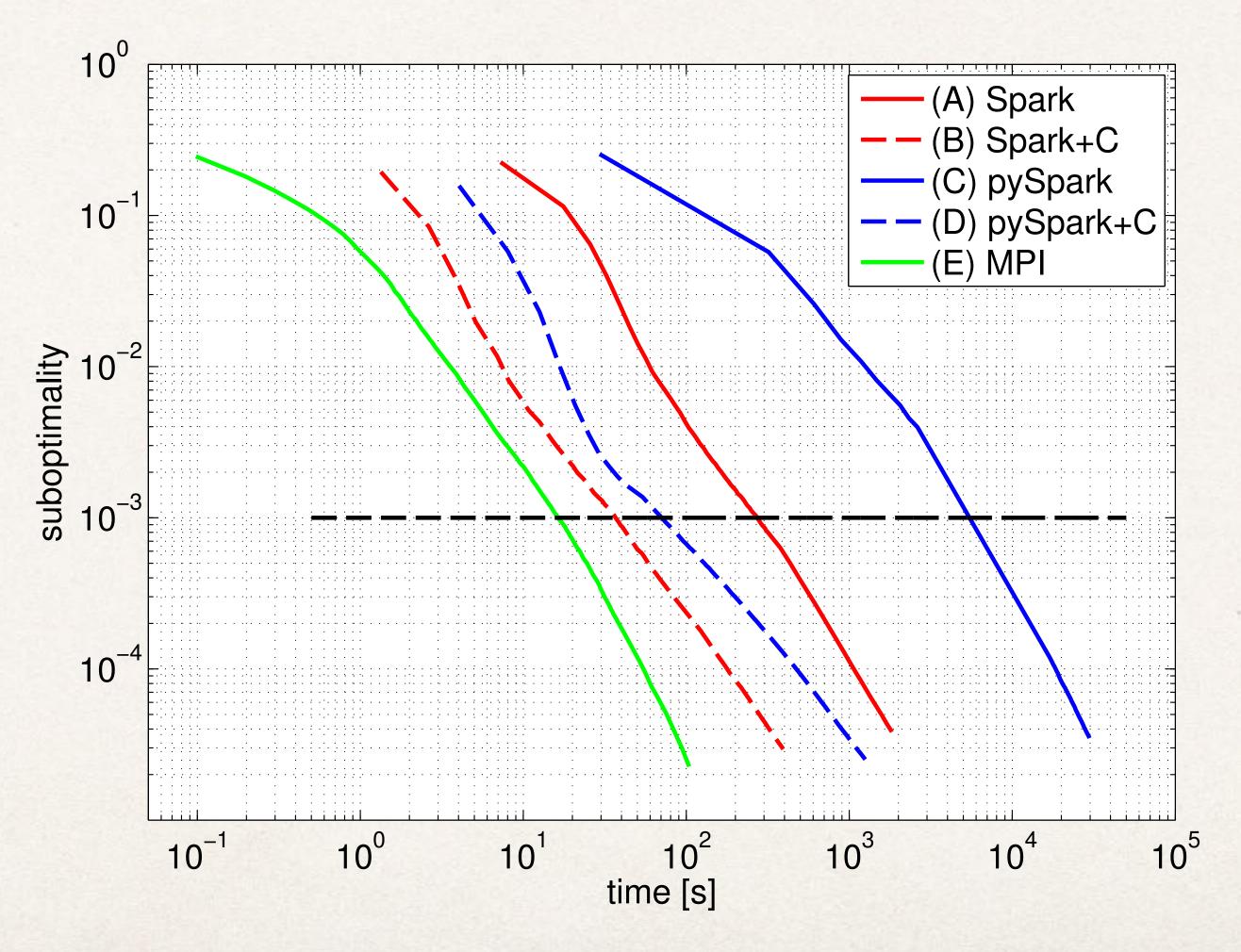
* Reading v from memory (RAM)

100 ns



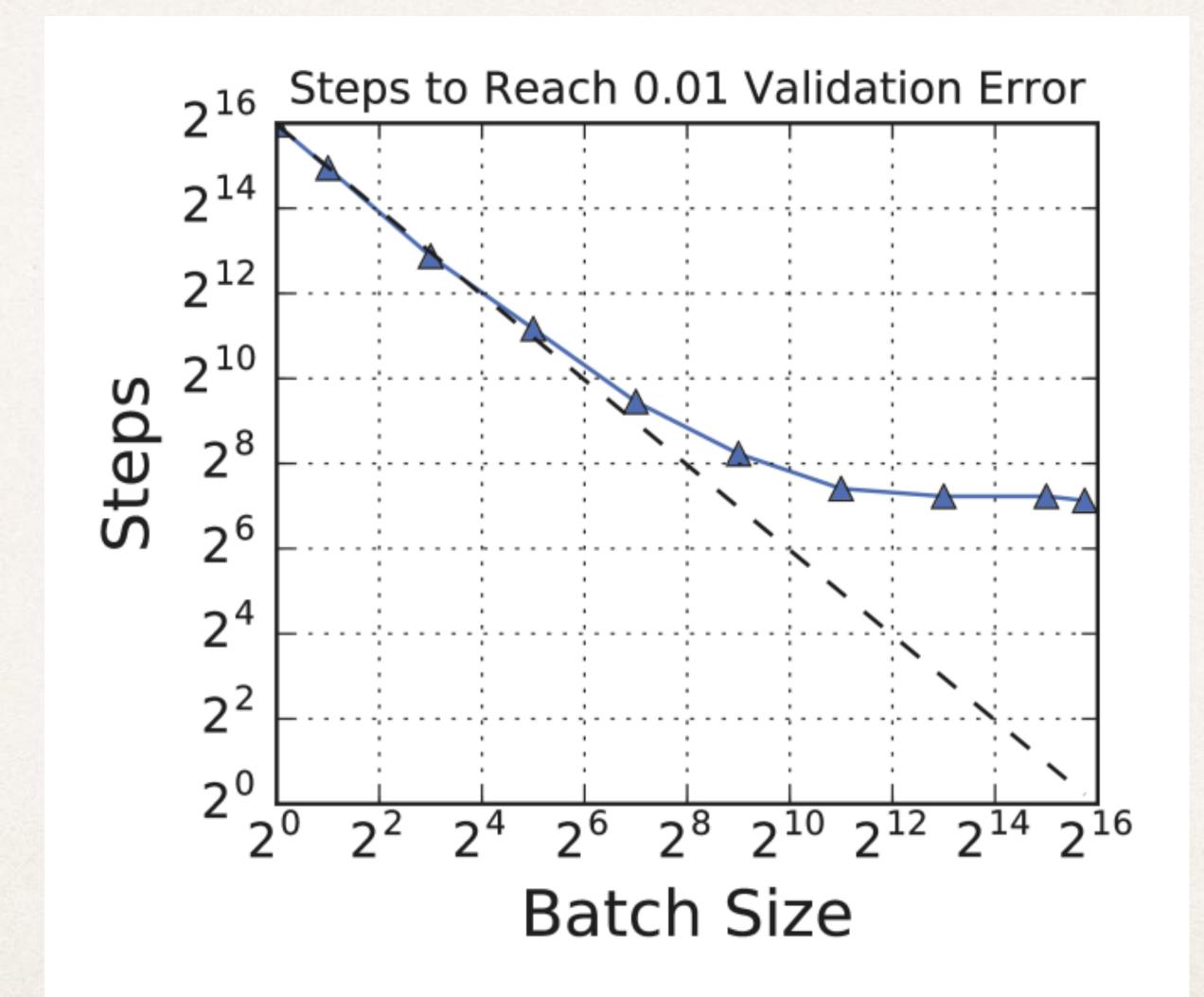
- Sending v to another machine 500'000 ns
- * Typical Map-Reduce iteration 10'000'000'000 ns

The Cost of Communication

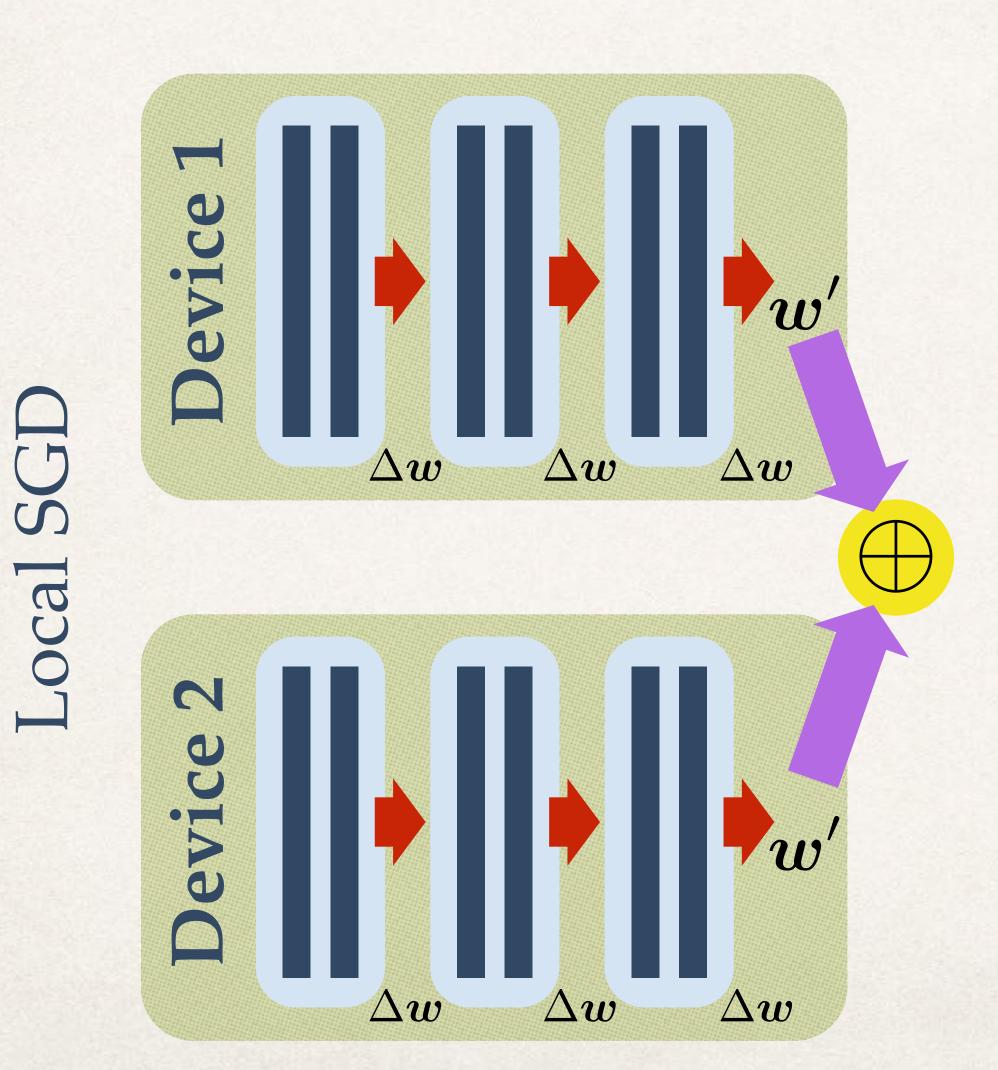


High-Performance Distributed Machine Learning using Apache Spark Dünner et al. 2016, arxiv.org/abs/1612.01437

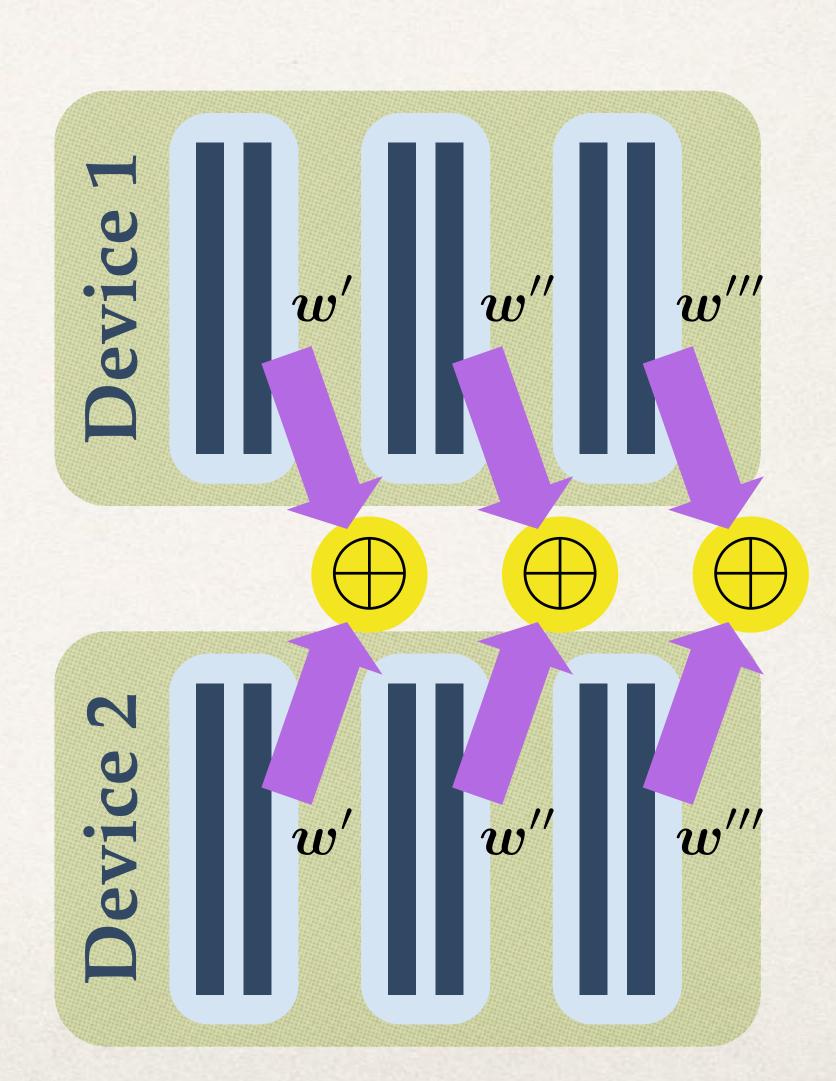
Just increase the batch size!



Data Parallel DL, Local Update Steps



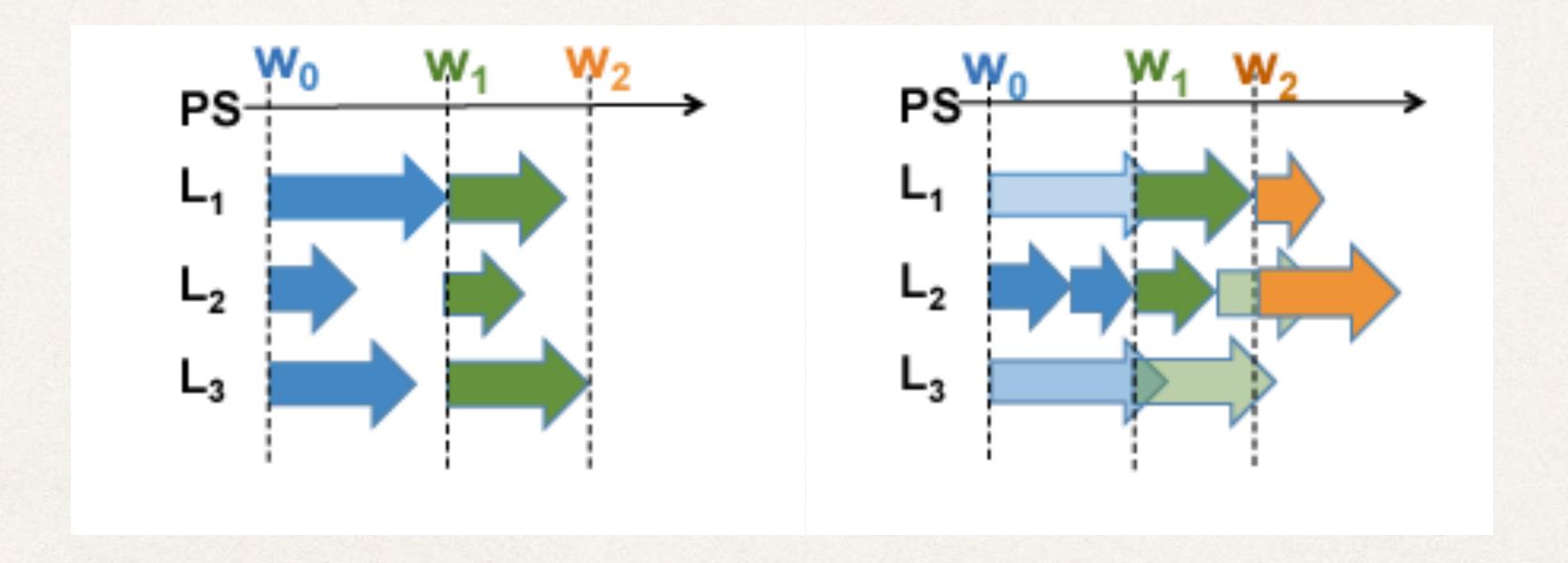
Mini-batch SGD



Asynchronous Parallel SGD

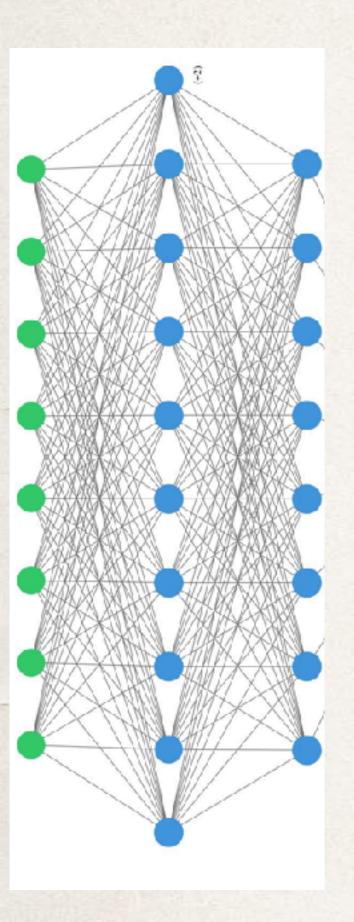
* Synchronous

* Asynchronous



Mini-Batch!

Communication Compression



A compressed version of model updates?

Examples:

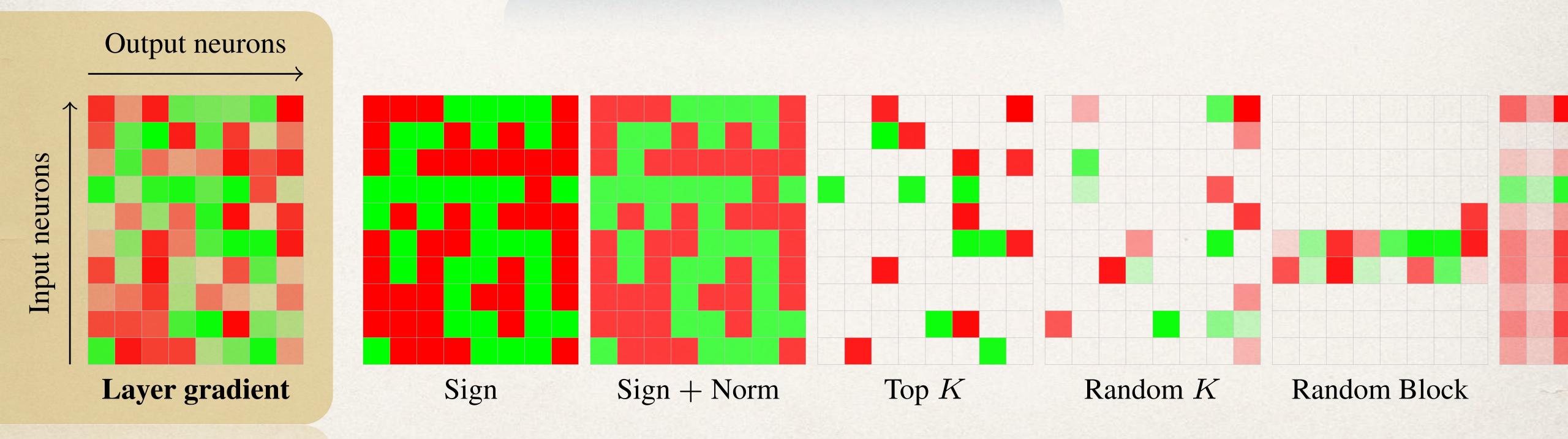
Communication

Reduction

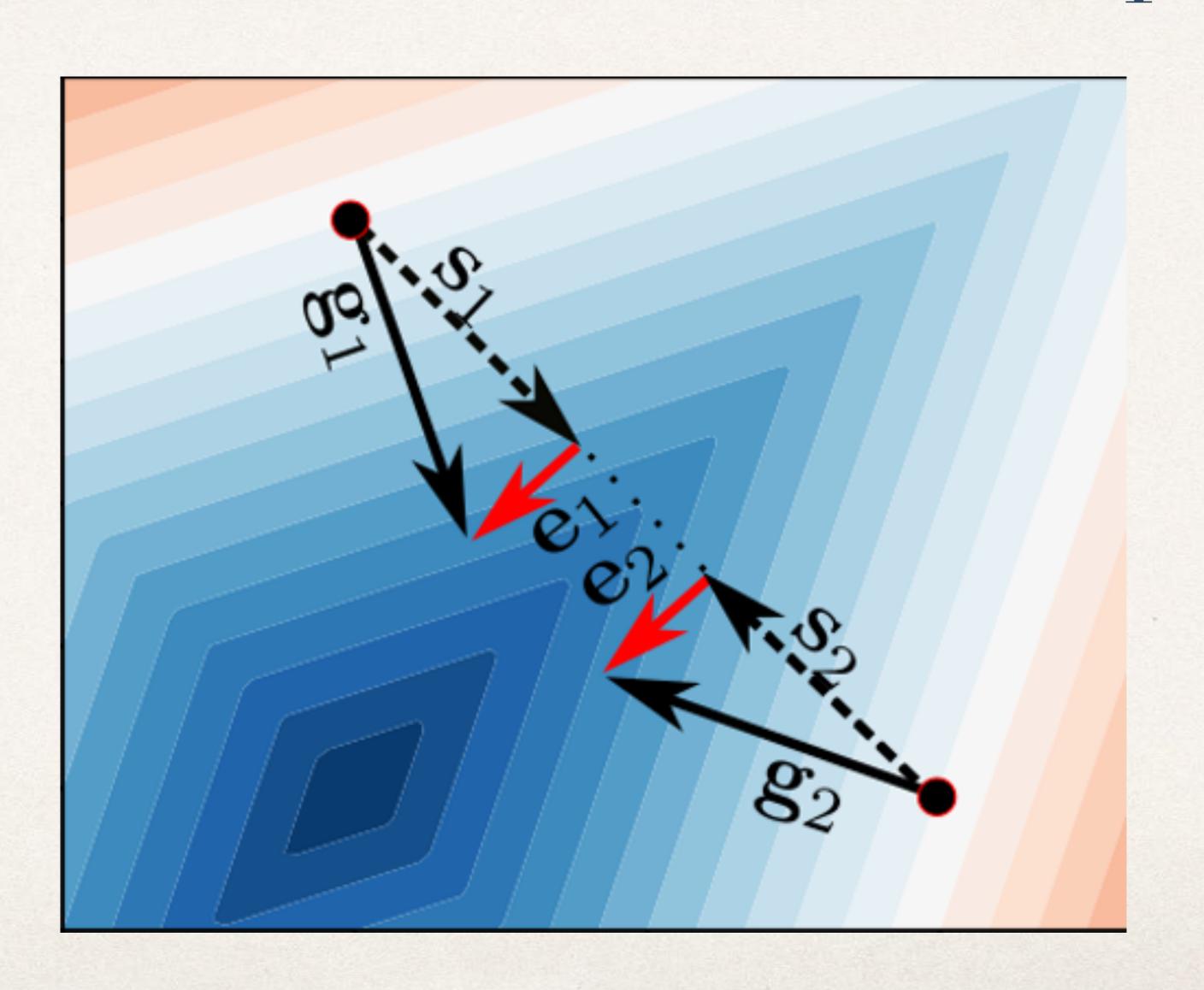
- quantization (e.g. 1-bit SGD)
- * top k=1% of all the entries 100x
- * rank-1 approximation >100x

Gradient Compression

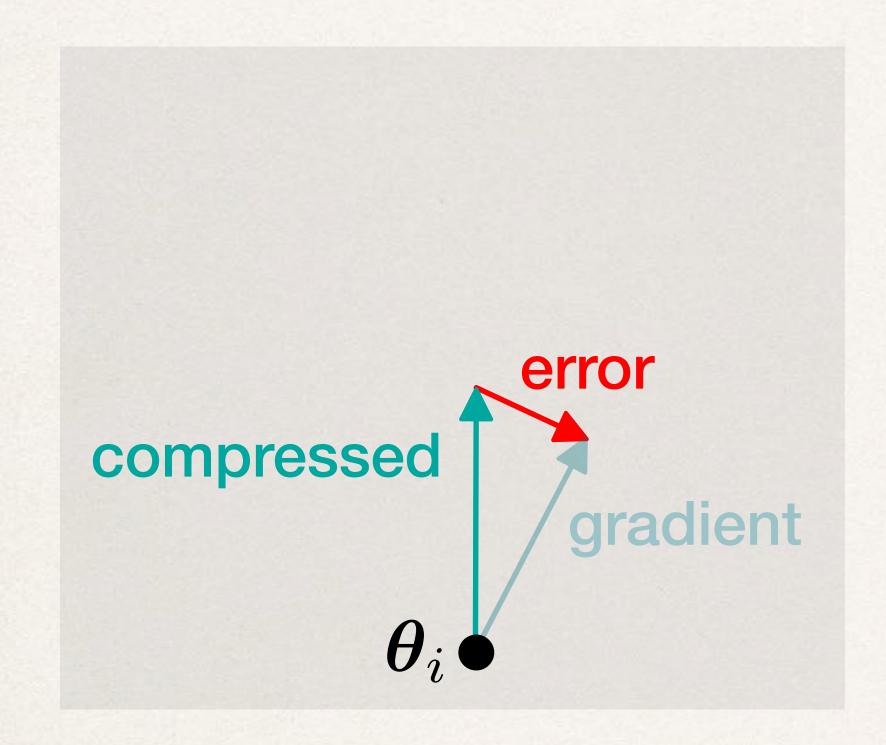
A compressed version of model updates?



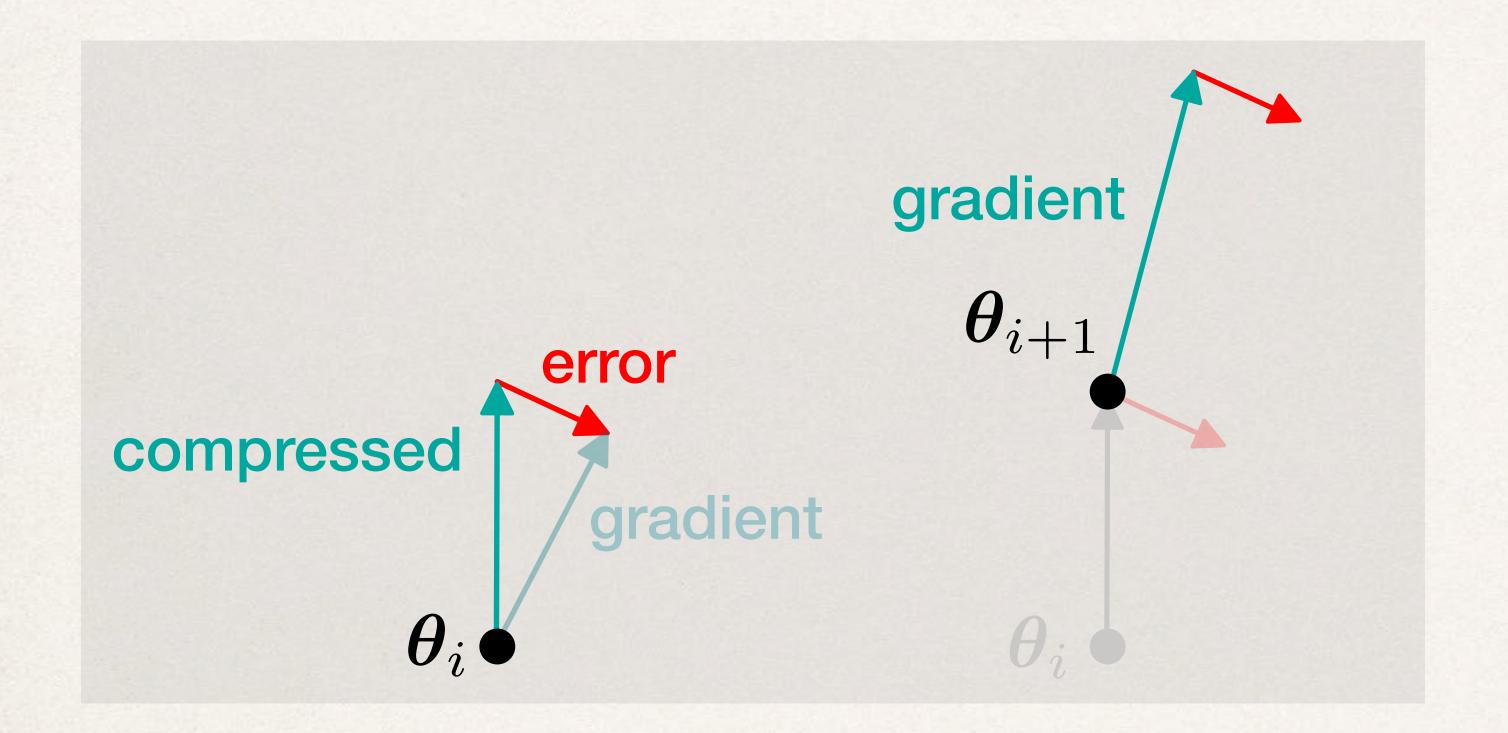
SGD fails with naive/biased compressors.



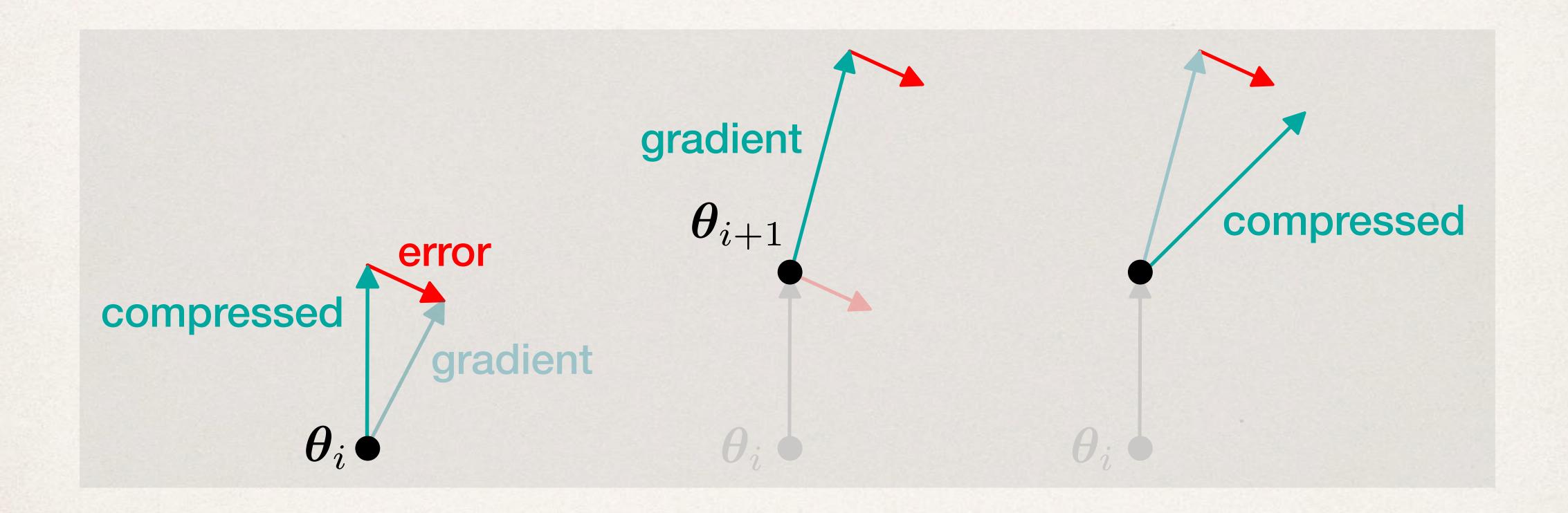
Error Feedback



Error Feedback



Error Feedback



Error Feedback: Convergence Rate

 δ : compression ratio

$$\|\mathcal{C}(\mathbf{x}) - \mathbf{x}\|_{2}^{2} \le (1 - \delta) \|\mathbf{x}\|_{2}^{2}$$

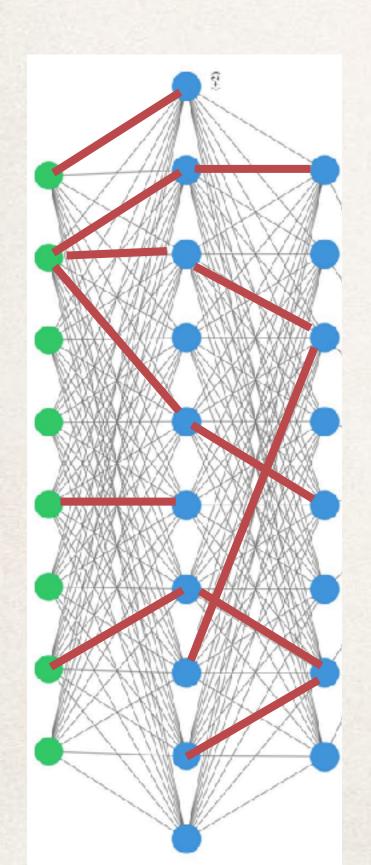
SGD on smooth non-convex objectives (w/central coordinator)

$$\mathbb{E}\|\nabla f(\overline{x}_t)\|^2 \le \mathcal{O}\left(\frac{1}{\sqrt{nT}} + \frac{1}{\delta^2 T}\right)$$

Can we also save Compute and Memory?

e.g. for deployment on low-resource devices

Model Compression with Error Feedback



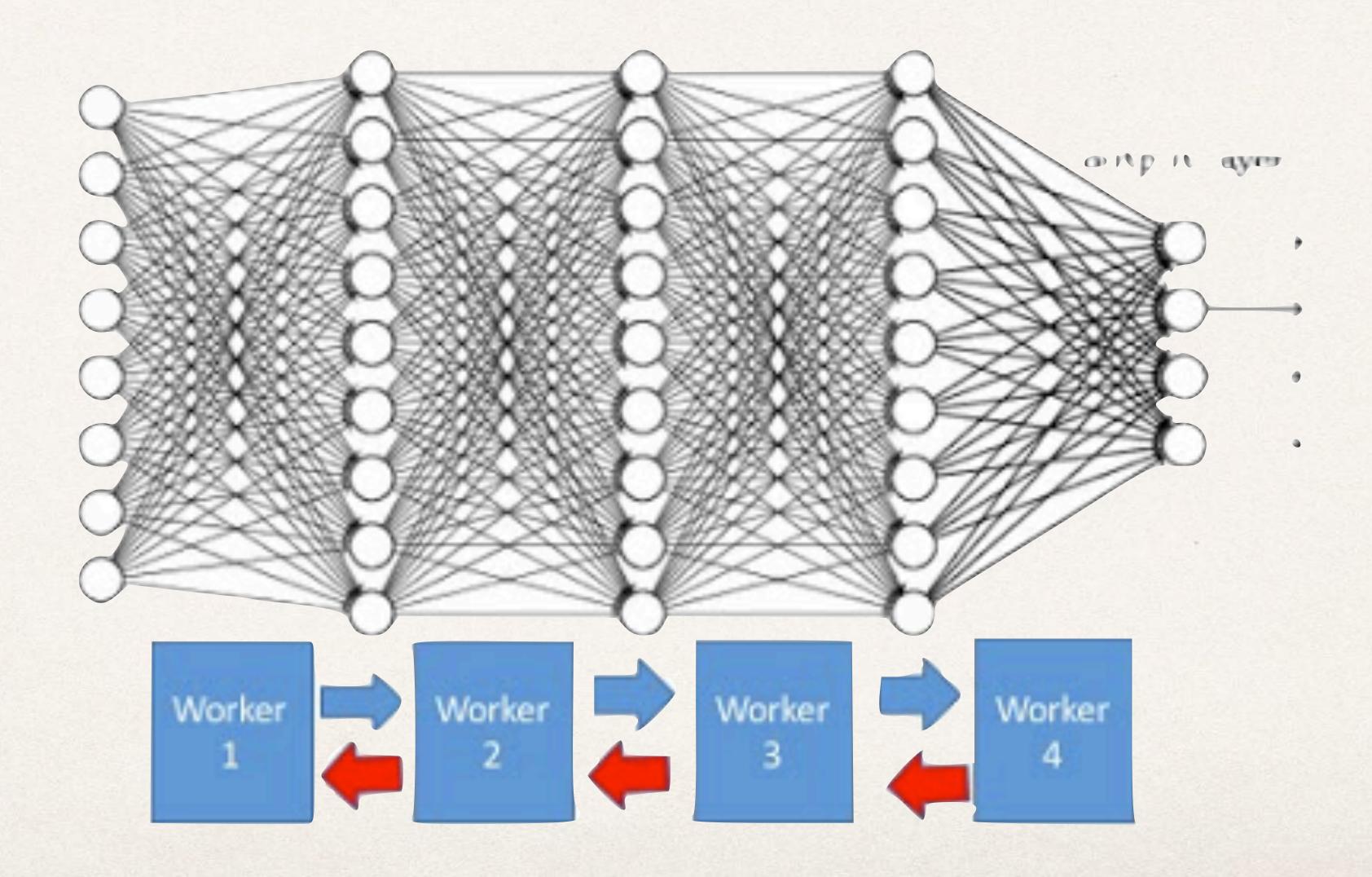
Prune most weights (set to zero)

set to limited precision

interactive while training

(Model Parallel)

Model-Parallel DL



Thanks!

mlo.epfl.ch tml.epfl.ch