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Practical comparison of algorithms

https://imgur.com/a/Hqolp#2dKCQHh



Trends - General

✤ Custom AI hardware & systems

✤ Federated or decentralized training

✤ Privacy

✤ Interpretability

✤ trust, fairness and robustness in ML  

(e.g. robust & secure against adversaries)

Optimization is a key element of most above topics



ML Training

device

⚙

xt+1 := xt − γt ∇fit(xt)

min
x

f(x) = 1
|data | ∑

i ∈ data

fi(x)

it ∼ Uniform(1, |data | )

Training algorithms: SGD-based



Training: Compute Cost
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https://medium.com/huggingface/distilbert-8cf3380435b5

Model Sizes 
(Transformer Models)

https://medium.com/huggingface/distilbert-8cf3380435b5
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17B Model Sizes 
(Transformer Models)

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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What are the fundamental limits 
of parallelizing the training of 

neural networks?



Parallel & Distributed Training

Distribute compute & memory across many devices
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Reduce

w(1) := w(1)⇤ w(5) := w(5)⇤

w := 1
K

P
k w

(k)

One-Shot Averaging Does Not Work

machine 1 machine 5machine 4machine 3machine 2



Communication: Always / Never

Naive Distributed SGD

#local datapoints read:T
#communications: T
convergence: ✓

w := w +
P

k �w(k)
Reduce

machine 1 machine 5machine 4machine 3machine 2

�w(1) := �xi �w(5) := �xi

repeat 
T times

machine 1 machine 5machine 4machine 3machine 2

w(1) := w(1)⇤ w(5) := w(5)⇤

Reduce w := 1
K

P
k w

(k)

do 
once

“always communicate”

One-Shot Averaged 
Distributed Optimization

#local datapoints read:T
#communications: 1
convergence: ✗

“never communicate”



v 2 R100

The Cost of Communication

✤ Reading     from memory (RAM)

100 ns

v

✤ Typical Map-Reduce iteration

10’000’000’000 ns

✤ Sending     to another machine

500’000 ns

v

Challenge



The Cost of Communication
Challenge

Spark vs. MPI

C) pySpark. This implementation is equivalent to that of
(A) except it is written entirely in Python/pySPARK. The
local solver makes use of the NumPy package (Walt et al.,
2011) for fast linear algebra.

D) pySpark+C. We replace the local solver of imple-
mentation (C) with a function call to a compiled and op-
timized C++ module, using the Python-C API. Unlike im-
plementation (B) we did not flatten the RDD data structure
since this was found to lead to worse performance in this
case. Instead, the local solver is executed using a mapPar-
titions operation. Within the mapPartitions operation we
iterate over the RDD in order to extract from each record a
list of NumPy arrays. Each entry in the list contains the
local data corresponding to a given feature. The list of
NumPy arrays is then passed into the C++ module. The
Python-C API allows NumPy arrays to expose a pointer to
their raw data and thus the need to copy data into any addi-
tional C++ data structures is eliminated.

E) MPI. The MPI implementation is entirely written
in C++. To initially partition the data we have de-
veloped a custom load-balancing algorithm to distribute
the computational load evenly across workers, such thatP

i2Pk
#nonzeros(ci) is roughly equal for each partition.

Such a partitioning ensures that each worker performs
roughly an equal amount of work and was found to per-
form comparable to the SPARK partitioning.

Note that the C++ code that implements the local solver in
implementations (B), (D) and (E) is identical up to specific
JNI/Python-C API functions.

4.2. Infrastructure

For the experiments discussed in the next section we ran
our algorithm implementations on a cluster of 4 physi-
cal nodes interconnected in a LAN topology through a
10Gbit-per-port switched inter-connection. Each node is
equipped with 64GB DDR4 memory, an 8-core Intel Xeon⇤

E5 x86 64 2.4Ghz CPU and solid-state disks using PCIe
NVMe 3.0 x4 I/O technology. The software configuration
of the cluster is based on Linux⇤ kernel v3.19, MPI v3.2,
and Apache Spark v1.5. Spark is configured not to use the
HDFS filesystem; instead SMB sharing directly over ext4
filesystem I/O is employed. While this decision may occa-
sionally give reduced performance in Spark, on one hand it
eliminates I/O measurement delay-variation artifacts due to
the extensive buffering/delay-writing of streams in HDFS,
and on the other hand it enables more fair comparison
with MPI since all overheads measured are strictly related
to Spark. Finally, all cluster nodes are configured with-
out a graphical environment or any other related services
that could possibly compete with Spark or MPI over CPU,
memory, network, or disk resources.
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(A) Spark
(B) Spark+C
(C) pySpark
(D) pySpark+C
(E) MPI

Figure 2. Suboptimality over time of implementations (A)-(E) for
training the Ridge Regression model on webspam.

5. Experimental Results
We investigate the performance of the five different im-
plementations of the COCOA algorithm discussed in Sec-
tion 4, by training a ridge regression model on the publicly
available webspam dataset1. All our experiments are run on
our internal cluster described in Section 4.2. If not specified
otherwise, we use 8 SPARK workers with 24 GB of memory
each, 2 on each machine, which allows the data partitions
to fit into memory. All our results are shown for optimized
parameters, including H , to suboptimality ✏ = 10�3 and
the results are averaged over 10 runs.

5.1. SPARK Performance Study

Figure 2 gives an overview over the performance of imple-
mentation (A)-(E), showing how the suboptimality evolves
over time during training for every implementation. We see
that the reference SPARK code, (A), written in Scala per-
forms significantly better than the equivalent Python im-
plementation, (C). This is to be expected, for two main
reasons: 1) Scala is a JVM compiled language in con-
trast to Python, 2) SPARK itself is written in Scala and us-
ing pySPARK, adds an additional layer which involves data
copy and serialization operations.

In this paper we would like to study the overheads present
in the SPARK framework in a language independent man-
ner (in as far as it is possible). As described in Section 4.2,
this can be achieved by offloading the computationally in-
tense local solvers into compiled C++ modules for both the
Scala as well as the Python implementations. In Figure 2
the performance of these new implementations is shown
by the dashed lines. As expected, the performance gain is
larger for the Python implementation. However, the Scala

1http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html

High-Performance Distributed Machine Learning using Apache Spark 
Dünner et al. 2016,  arxiv.org/abs/1612.01437

http://arxiv.org/abs/1612.01437


Just increase the batch size!

Measuring the Effects of Data Parallelism on Neural Network Training
Shallue et al., 2018
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Data Parallel DL, Local Update Steps



✤ Synchronous ✤ Asynchronous

Asynchronous Parallel SGD

Mini-Batch!



Communication Compression

A compressed version 
of model updates?

✤ quantization (e.g. 1-bit SGD) 
✤ top k=1% of all the entries
✤ rank-1 approximation

Examples: Communication 
Reduction

32x

100x

>100x



Gradient Compression
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Figure 1: Compression schemes compared in this paper. Implementation details are in Appendix E.

and generalization for compression schemes (Karimireddy et al., 2019). This can enable general35

biased gradient compression schemes to reach the target test accuracy.36

Thirdly, there is growing evidence that the generalization ability of modern over-parameterized37

deep learning models is related to low-rankedness (Arora et al., 2018; Martin & Mahoney, 2018;38

Collins et al., 2018). Using a low-rank update (as we do) can be viewed as implicitly performing39

spectral regularization (Gunasekar et al., 2018) and hence can be expected to have good generalization40

properties (Yoshida & Miyato, 2017). Further, Wang et al. (2018) show that the eigenspectrum of the41

stochastic gradients for deep learning models decays, suggesting that a rank-based schemes can get42

away with aggressive compression without sacrificing convergence.43

In this work, we design POWERSGD with the above observations in mind. POWERSGD computes a44

low-rank approximation of the gradient using a generalized power iteration (also known as subspace45

iteration (Stewart & Miller, 1975)). The approximation is computationally light-weight, avoiding46

any prohibitively expensive Singular Value Decomposition. Using all-reduce gradient aggregation,47

we empirically demonstrate that POWERSGD achieves wall-clock speedups over regular SGD in a48

16-GPU setting, even with the optimized NCCL communication backend on a fast network (and is49

the only algorithm to do so.) We reduce the net communication time (gradient exchange including50

the coding and decoding) by 54% for RESNET18 on CIFAR10 and by 90% for language modeling51

using an LSTM on WIKITEXT-2. Training time to full test quality is reduced by 24% for RESNET1852

and by 55% for the LSTM.53

2 Related work54

Gradient compression A number of recent works have proposed different compression schemes:55

Alistarh et al. (2017) and Wen et al. (2017) quantize each coordinate of the gradient; Seide et al.56

(2014); Carlson et al. (2015); Bernstein et al. (2018, 2019) and Karimireddy et al. (2019) replace57

each coordinate of the gradient with its sign; Lin et al. (2018); Stich et al. (2018) and Wangni et al.58

(2018) use the largest few coordinates; and Konečnỳ et al. (2016) and Wang et al. (2018) use a low-59

rank approximation. See Figure 1 for an illustration. The latter three methods—specifically signed60

compression with majority vote (called Signum) from Bernstein et al. (2019), the top coordinates61

(top-K) from Lin et al. (2018); Stich et al. (2018), and low-rank approximation (Spectral Atomo) from62

Wang et al. (2018)—were shown to converge faster (in terms of number of bits communicated) than63

the former quantization-based approaches (QSGD) of Alistarh et al. (2017). Perhaps the work closest64

to ours is Spectral Atomo by Wang et al. (2018). Spectral Atomo performs importance sampling of the65

gradient’s singular vectors and is an unbiased compression scheme. It requires, however, performing66

a full Singular Value Decomposition every iteration and is hence computationally impractical.67

Error feedback First introduced in (Seide et al., 2014) and analyzed in (Stich et al., 2018) for the68

convex case, error feedback involves computing the difference between a worker’s gradient and the69

compressed gradient (i.e. error) and adding it back to the next gradient (feedback). Karimireddy et al.70

(2019) analyze the non-convex case and show that error feedback is crucial both for convergence and71

generalization when using biased compressors (e.g. sign or top-K). The practical algorithm proposed72

by Lin et al. (2018) can also viewed as an approximate top-K compressor with error feedback. In73

general, biased compression schemes equipped with error feedback tend to out-perform their unbiased74

counterparts.75

Low-rank learning Recent works argue that in modern over-parameterized deep networks, the final76

model learnt has a ‘low stable-rank’ (Martin & Mahoney, 2018; Li et al., 2018). This can partially77

2

A compressed version 
of model updates?



SGD fails with naive/biased compressorss

min
x∈ℝ2

|x1 + x2 | + 2 |x1 − x2 |



Error Feedback

PowerSGD: Practical Low-Rank Gradient
Compression for Distributed Optimization

Rapid Low-rank Approximation
PowerSGD sees a layer’s gradient as a matrix. It approxi‐
mates this matrix as the product of two narrow matrices by
using one step of power iteration.

This approximation is coarse, but only
involves two multiplications of the gradient
matrix and a very narrow one, followed by an
orthogonali!ation of the output. This is much
faster than an S!D.

PowerSGD con"er#es, even with this coarse approximation.
This is mainly due to the error feedback mechanism.

$nput features

O
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Error Feedba	

"ven though PowerSGD compression is biased
and of low quality, the algorithm can converge
in a similar number of steps as full#precision
SGD. This is than$s to error feedbac� %Seide et
al. &'(), Stich et al. &'(*, +arimireddy et al.
&'(,-.

All-reduce Communication

Code
Download the code at #ithub%com&epfml&powers#d.

In normal, uncompressed, SGD, the wor$ers average their
gradients after each iteration. This average
can be computed e.ciently with hierarchical
all-reduce communication.

/nfortunately, compressed algorithms
cannot hierarchicall' a##re#ate their
compressed gradients. Therefore, these algorithms resort to
less scalable all#to#all communication or a parameter server.

The power iteration step of PowerSGD, e0ectively multiplies
the average gradient matrix across wor$ers with the same
narrow matrix 1right2. Due to linearity, this operation is
e(ui"alent to averaging the small output matrices 1left2.

3ecause all communication in PowerSGD is )ust an a"era#e
operation, it en4oys all the bene5ts of all-reduce.

Scalabilit'
Due to its fast compression algorithm and stron# reduction
in communication 1around (''x in our experiments2, Pow‐
erSGD scales well on slow bac$ends, but can still improve
over SGD when using 6vidia’s highly optimi!ed *CCL.

Res*et-+, on Cifar-+-

( & ) * (78or$ers ( & ) * (78or$ers

GLOO .Slow backend/ *CCL .0ast backend/

(x
&x

)x

*x

(x
&x

)x

*x
PowerSGD PowerSGD

Si#num

SGD

SGD
Si#num

Plu#&Pla'
In our experiments, PowerSGD can be used plug#and#play
with an existing optimi!er without re-tunin# the optimi!er’s
hyperparameters. 8ith a high enough compression ran$,
PowerSGD can achieve the same test accurac' as uncom‐
pressed, full#precision SGD while en4oying reductions in
communication of more than +--x.

1h2s !o#els Sai Praneeth 3arimiredd' 4artin 5a##i

Loss' Gradient Compression
In distributed training, wor$ers typically exchange their mini#
batch gradients at every iteration. These gradients can be
(''’s of megabytes large, so this communication limits the
scalabilit' of distributed optimi!ation.

Loss' compression of gradients before sharing them across
wor$ers is a popular approach to mitigate this problem.

Seed
6orker7s #radientsOutputs

compressed
#radient

error

#radient

compressed
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Error Feedback: Convergence Rate

Error Feedback Fixes SignSGD

Counterexample 3. For x 2 R2 consider the following
least-squares problem with x? = (0, 0)>:

min
x2R2

⇥
f(x) := (ha1,xi)

2 + (ha2,xi)
2
⇤
, where

a1,2 := ±(1,�1) + ✏(1, 1) ,

for parameter 0 < ✏ < 1 and stochastic gradient g(x) =
rx(ha1,xi)2 with prob. 1

2 and g(x) = rx(ha2,xi)2 with
prob. 1

2 . The stochastic gradient is then either ea1 or ea2
for some scalar e. Exactly as in the non-smooth case, for
x0 = (1, 1)>, the sign of the gradient sign(g) = ±(1,�1).
Hence SIGNSGD with any step-size sequence remains stuck
along the line x1 + x2 = 2 and f(xt) � f(x0) a.s.

We can generalize the above counter-example to arbitrary
dimensions and loss functions.

Theorem I. Suppose that scalar loss functions {li : R !

R}ni=1 and data-points {ai}ni=1 2 Rd for d � 2 satisfy:
i) f(x) :=

Pn
i=1 li(hai,xi) has a unique optimum at x?,

and ii) there exists s 2 {�1, 1}d such that sign(ai) = ±s
for all i. Then SIGNSGD with batch-size 1 and stochas-
tic gradients g(x) = rxli(hai,xi) for i chosen uniformly
at random does not converge to x? a.s. for any adaptive
sequence of step-sizes, even with random initialization.

4. Convergence of Compressed Methods

We show the rather surprising result that incorporating error-
feedback is sufficient to ensure that the algorithm converges
at a rate which matches that of SGD. In this section we
consider a general gradient compression scheme.

Algorithm 2 EF-SGD (Compr. SGD with Error-Feedback)

1: Input: learning rate �, compressor C(·), x0 2 Rd

2: Initialize: e0 = 0 2 Rd

3: for t = 0, . . . , T � 1 do

4: gt := stochasticGradient(xt)
5: pt := �gt + et . error correction
6: �t := C(pt) . compression
7: xt+1 := xt ��t . update iterate
8: et+1 := pt ��t . update residual error
9: end for

We generalize the notion of a compressor from (Stich et al.,
2018).

Assumption A (Compressor). An operator C : Rd
! Rd

is a �-approximate compressor over Q for � 2 (0, 1] if

kC(x)� xk22  (1� �)kxk22, 8x 2 Q .

Note that � = 1 implies that C(x) = x. Examples of
compressors include: i) the sign operator, ii) top-k which
selects k coordinates with the largest absolute value while

zero-ing out the rest (Lin et al., 2018; Stich et al., 2018),
iii) k-PCA which approximates a matrix X with its top k
eigenvectors (Wang et al., 2018). Randomized compressors
satisfying the assumption in expectation are also allowed.

We now state a key lemma that shows that the residual errors
maintained in Algorithm 2 do not accumulate too much.

Lemma 3 (Error is bounded). Assume that E[kgtk
2]  �2

for all t � 0. Then at any iteration t of EF-SGD, the norm
of the error et in Algorithm 2 is bounded:

Eketk22 
4(1� �)�2�2

�2
, 8t � 0 .

If � = 1, then ketk = 0 and the error is zero as expected.

We employ standard assumptions of smoothness of the loss
function and the variance of the stochastic gradient.

Assumption B (Smoothness). A function f : Rd
! R is

L-smooth if for all x, y 2 Rd the following holds:

|f(y)� (f(x) + hrf(x),y � xi)| 
L

2
ky � xk22 .

Assumption C (Moment bound). For any x, our query for
a stochastic gradient returns g such that

E[g] = rf(x) and Ekgk22  �2 .

Given these assumptions, we can formally state our theorem
followed by a sketch of the proof.

Theorem II (Non-convex convergence of EF-SGD). Let
{xt}t�0 denote the iterates of Algorithm 2 for any step-size
� > 0. Under Assumptions A, B, and C,

min
t2[T ]

E[krf(xt)k
2] 

2f0
�(T + 1)

+
�L�2

2
+
4�2L2�2(1� �)

�2
,

with f0 := f(x0)� f?.

Proof Sketch. Intuitively, the condition that C(·) is a �-
approximate compressor implies that at each iteration a
�-fraction of the gradient information is sent. The rest is
added to et to be transmitted later. Eventually, all the gradi-
ent information is transmitted—albeit with a delay which
depends on �. Thus EF-SGD can intuitively be viewed as
a delayed gradient method. If the function is smooth, the
gradient does not change quickly and so the delay does not
significantly matter.

More formally, consider the error-corrected sequence x̃t

which represents xt with the ‘delayed’ information added:

x̃t := xt � et .

It satisfies the recurrence

x̃t+1 = xt � et+1 � C(pt) = xt � pt = x̃t � �gt .

: compression ratioδ

SGD on smooth non-convex objectives (w/central coordinator)

Error Feedback Fixes SignSGD and other Gradient Compression Schemes 

𝔼∥∇f(xt)∥2 ≤ 𝒪( 1

nT
+

1
δ2T )



Can we also save Compute and Memory?

e.g. for deployment on low-resource devices



Model Compression with Error Feedback

Prune most weights (set to zero)

set to limited precision

interactive while training

Dynamic Model Pruning with Feedback 



Model-Parallel DL
(Model Parallel)

http://kuozhangub.blogspot.com/2017/08/data-parallel-and-model-parallel.html



Thanks!
mlo.epfl.ch
tml.epfl.ch

http://mlo.epfl.ch
https://www.epfl.ch/labs/tml/

