forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNEWS
287 lines (176 loc) · 10.1 KB
/
NEWS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
* New 64-bit API: for every "plan_guru" function there is a new "plan_guru64"
function with the same semantics, but which takes fftw_iodim64 instead of
fftw_iodim. fftw_iodim64 is the same as fftw_iodim, except that it takes
ptrdiff_t integer types as parameters, which is a 64-bit type on
64-bit machines. This is only useful for specifying very large transforms
on 64-bit machines. (Internally, FFTW uses ptrdiff_t everywhere
regardless of what API you choose.)
* Removed k7 support, which only worked in 32-bits mode and is
becoming obsolete. Use --enable-sse instead.
FFTW 3.1.1
* Performance improvements for Intel EMT64.
* Performance improvements for large-size transforms with SIMD.
* Cycle counter support for Intel icc and Visual C++ on x86-64.
* In fftw-wisdom tool, replaced obsolete --impatient with --measure.
* Fixed compilation failure with AIX/xlc; thanks to Joseph Thomas.
* Windows DLL support for Fortran API (added missing __declspec(dllexport)).
* SSE/SSE2 code works properly (i.e. disables itself) on older 386 and 486
CPUs lacking a CPUID instruction; thanks to Eric Korpela.
FFTW 3.1
* Faster FFTW_ESTIMATE planner.
* New (faster) algorithm for REDFT00/RODFT00 (type-I DCT/DST) of odd size.
* "4-step" algorithm for faster FFTs of very large sizes (> 2^18).
* Faster in-place real-data DFTs (for R2HC and HC2R r2r formats).
* Faster in-place non-square transpositions (FFTW uses these internally
for in-place FFTs, and you can also perform them explicitly using
the guru interface).
* Faster prime-size DFTs: implemented Bluestein's algorithm, as well
as a zero-padded Rader variant to limit recursive use of Rader's algorithm.
* SIMD support for split complex arrays.
* Much faster Altivec/VMX performance.
* New fftw_set_timelimit function to specify a (rough) upper bound to the
planning time (does not affect ESTIMATE mode).
* Removed --enable-3dnow support; use --enable-k7 instead.
* FMA (fused multiply-add) version is now included in "standard" FFTW,
and is enabled with --enable-fma (the default on PowerPC and Itanium).
* Automatic detection of native architecture flag for gcc. New
configure options: --enable-portable-binary and --with-gcc-arch=<arch>,
for people distributing compiled binaries of FFTW (see manual).
* Automatic detection of Altivec under Linux with gcc 3.4 (so that
same binary should work on both Altivec and non-Altivec PowerPCs).
* Compiler-specific tweaks/flags/workarounds for gcc 3.4, xlc, HP/UX,
Solaris/Intel.
* Various documentation clarifications.
* 64-bit clean. (Fixes a bug affecting the split guru planner on
64-bit machines, reported by David Necas.)
* Fixed Debian bug #259612: inadvertent use of SSE instructions on
non-SSE machines (causing a crash) for --enable-sse binaries.
* Fixed bug that caused HC2R transforms to destroy the input in
certain cases, even if the user specified FFTW_PRESERVE_INPUT.
* Fixed bug where wisdom would be lost under rare circumstances,
causing excessive planning time.
* FAQ notes bug in gcc-3.4.[1-3] that causes FFTW to crash with SSE/SSE2.
* Fixed accidentally exported symbol that prohibited simultaneous
linking to double/single multithreaded FFTW (thanks to Alessio Massaro).
* Support Win32 threads under MinGW (thanks to Alessio Massaro).
* Fixed problem with building DLL under Cygwin; thanks to Stephane Fillod.
* Fix build failure if no Fortran compiler is found (thanks to Charles
Radley for the bug report).
* Fixed compilation failure with icc 8.0 and SSE/SSE2. Automatic
detection of icc architecture flag (e.g. -xW).
* Fixed compilation with OpenMP on AIX (thanks to Greg Bauer).
* Fixed compilation failure on x86-64 with gcc (thanks to Orion Poplawski).
* Incorporated patch from FreeBSD ports (FreeBSD does not have memalign,
but its malloc is 16-byte aligned).
* Cycle-counter compilation fixes for Itanium, Alpha, x86-64, Sparc,
MacOS (thanks to Matt Boman, John Bowman, and James A. Treacy for
reports/fixes). Added x86-64 cycle counter for PGI compilers,
courtesy Cristiano Calonaci.
* Fix compilation problem in test program due to C99 conflict.
* Portability fix for import_system_wisdom with djgpp (thanks to Juan
Manuel Guerrero).
* Fixed compilation failure on MacOS 10.3 due to getopt conflict.
* Work around Visual C++ (version 6/7) bug in SSE compilation;
thanks to Eddie Yee for his detailed report.
Changes from FFTW 3.1 beta 2:
* Several minor compilation fixes.
* Eliminate FFTW_TIMELIMIT flag and replace fftw_timelimit global with
fftw_set_timelimit function. Make wisdom work with time-limited plans.
Changes from FFTW 3.1 beta 1:
* Fixes for creating DLLs under Windows; thanks to John Pavel for his feedback.
* Fixed more 64-bit problems, thanks to John Pavel for the bug report.
* Further speed improvements for Altivec/VMX.
* Further speed improvements for non-square transpositions.
* Many minor tweaks.
FFTW 3.0.1
* Some speed improvements in SIMD code.
* --without-cycle-counter option is removed. If no cycle counter is found,
then the estimator is always used. A --with-slow-timer option is provided
to force the use of lower-resolution timers.
* Several fixes for compilation under Visual C++, with help from Stefane Ruel.
* Added x86 cycle counter for Visual C++, with help from Morten Nissov.
* Added S390 cycle counter, courtesy of James Treacy.
* Added missing static keyword that prevented simultaneous linkage
of different-precision versions; thanks to Rasmus Larsen for the bug report.
* Corrected accidental omission of f77_wisdom.f file; thanks to Alan Watson.
* Support -xopenmp flag for SunOS; thanks to John Lou for the bug report.
* Compilation with HP/UX cc requires -Wp,-H128000 flag to increase
preprocessor limits; thanks to Peter Vouras for the bug report.
* Removed non-portable use of 'tempfile' in fftw-wisdom-to-conf script;
thanks to Nicolas Decoster for the patch.
* Added 'make smallcheck' target in tests/ directory, at the request of
James Treacy.
FFTW 3.0
Major goals of this release:
* Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below).
* Complete rewrite, to make it easier to add new algorithms and transforms.
* New API, to support more general semantics.
Other enhancements:
* SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec).
(With special thanks to Franz Franchetti for many experimental prototypes
and to Stefan Kral for the vectorizing generator from fftwgel.)
* True in-place 1d transforms of large sizes (as well as compressed
twiddle tables for additional memory/cache savings).
* More arbitrary placement of real & imaginary data, e.g. including
interleaved (as in FFTW 2.x) as well as separate real/imag arrays.
* Efficient prime-size transforms of real data.
* Multidimensional transforms can operate on a subset of a larger matrix,
and/or transform selected dimensions of a multidimensional array.
* By popular demand, simultaneous linking to double precision (fftw),
single precision (fftwf), and long-double precision (fftwl) versions
of FFTW is now supported.
* Cycle counters (on all modern CPUs) are exploited to speed planning.
* Efficient transforms of real even/odd arrays, a.k.a. discrete
cosine/sine transforms (types I-IV). (Currently work via pre/post
processing of real transforms, ala FFTPACK, so are not optimal.)
* DHTs (Discrete Hartley Transforms), again via post-processing
of real transforms (and thus suboptimal, for now).
* Support for linking to just those parts of FFTW that you need,
greatly reducing the size of statically linked programs when
only a limited set of transform sizes/types are required.
* Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along
with a command-line tool (fftw-wisdom) to generate/update it.
* Fortran API can be used with both g77 and non-g77 compilers
simultaneously.
* Multi-threaded version has optional OpenMP support.
* Authors' good looks have greatly improved with age.
Changes from 3.0beta3:
* Separate FMA distribution to better exploit fused multiply-add instructions
on PowerPC (and possibly other) architectures.
* Performance improvements via some inlining tweaks.
* fftw_flops now returns double arguments, not int, to avoid overflows
for large sizes.
* Workarounds for automake bugs.
Changes from 3.0beta2:
* The standard REDFT00/RODFT00 (DCT-I/DST-I) algorithm (used in
FFTPACK, NR, etcetera) turns out to have poor numerical accuracy, so
we replaced it with a slower routine that is more accurate.
* The guru planner and execute functions now have two variants, one that
takes complex arguments and one that takes separate real/imag pointers.
* Execute and planner routines now automatically align the stack on x86,
in case the calling program is misaligned.
* README file for test program.
* Fixed bugs in the combination of SIMD with multi-threaded transforms.
* Eliminated internal fftw_threads_init function, which some people were
calling accidentally instead of the fftw_init_threads API function.
* Check for -openmp flag (Intel C compiler) when --enable-openmp is used.
* Support AMD x86-64 SIMD and cycle counter.
* Support SSE2 intrinsics in forthcoming gcc 3.3.
Changes from 3.0beta1:
* Faster in-place 1d transforms of non-power-of-two sizes.
* SIMD improvements for in-place, multi-dimensional, and/or non-FFTW_PATIENT
transforms.
* Added support for hard-coded DCT/DST/DHT codelets of small sizes; the
default distribution only includes hard-coded size-8 DCT-II/III, however.
* Many minor improvements to the manual. Added section on using the
codelet generator to customize and enhance FFTW.
* The default 'make check' should now only take a few minutes; for more
strenuous tests (which may take a day or so), do 'cd tests; make bigcheck'.
* fftw_print_plan is split into fftw_fprint_plan and fftw_print_plan, where
the latter uses stdout.
* Fixed ability to compile with a C++ compiler.
* Fixed support for C99 complex type under glibc.
* Fixed problems with alloca under MinGW, AIX.
* Workaround for gcc/SPARC bug.
* Fixed multi-threaded initialization failure on IRIX due to lack of
user-accessible PTHREAD_SCOPE_SYSTEM there.