forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.ml
176 lines (147 loc) · 4.63 KB
/
util.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2006 Matteo Frigo
* Copyright (c) 2003, 2006 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*)
(* various utility functions *)
open List
open Unix
(*****************************************
* Integer operations
*****************************************)
(* fint the inverse of n modulo m *)
let invmod n m =
let rec loop i =
if ((i * n) mod m == 1) then i
else loop (i + 1)
in
loop 1
(* Yooklid's algorithm *)
let rec gcd n m =
if (n > m)
then gcd m n
else
let r = m mod n
in
if (r == 0) then n
else gcd r n
(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)
let lowest_terms n m =
if (m mod n == 0) then
(1,0)
else
let nn = (abs n) in let mm = m * (n / nn)
in let mpos =
if (mm > 0) then (mm mod nn)
else (mm + (1 + (abs mm) / nn) * nn) mod nn
and d = gcd nn (abs mm)
in (nn / d, mpos / d)
(* find a generator for the multiplicative group mod p
(where p must be prime for a generator to exist!!) *)
exception No_Generator
let find_generator p =
let rec period x prod =
if (prod == 1) then 1
else 1 + (period x (prod * x mod p))
in let rec findgen x =
if (x == 0) then raise No_Generator
else if ((period x x) == (p - 1)) then x
else findgen ((x + 1) mod p)
in findgen 1
(* raise x to a power n modulo p (requires n > 0) (in principle,
negative powers would be fine, provided that x and p are relatively
prime...we don't need this functionality, though) *)
exception Negative_Power
let rec pow_mod x n p =
if (n == 0) then 1
else if (n < 0) then raise Negative_Power
else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p
else x * (pow_mod x (n - 1) p) mod p
(******************************************
* auxiliary functions
******************************************)
let rec forall id combiner a b f =
if (a >= b) then id
else combiner (f a) (forall id combiner (a + 1) b f)
let sum_list l = fold_right (+) l 0
let max_list l = fold_right (max) l (-999999)
let min_list l = fold_right (min) l 999999
let count pred = fold_left
(fun a elem -> if (pred elem) then 1 + a else a) 0
let remove elem = List.filter (fun e -> (e != elem))
let cons a b = a :: b
let null = function
[] -> true
| _ -> false
let for_list l f = List.iter f l
let rmap l f = List.map f l
(* functional composition *)
let (@@) f g x = f (g x)
let forall_flat a b = forall [] (@) a b
let identity x = x
let rec minimize f = function
[] -> None
| elem :: rest ->
match minimize f rest with
None -> Some elem
| Some x -> if (f x) >= (f elem) then Some elem else Some x
let rec find_elem condition = function
[] -> None
| elem :: rest ->
if condition elem then
Some elem
else
find_elem condition rest
(* find x, x >= a, such that (p x) is true *)
let rec suchthat a pred =
if (pred a) then a else suchthat (a + 1) pred
(* print an information message *)
let info string =
if !Magic.verbose then begin
let now = Unix.times ()
and pid = Unix.getpid () in
prerr_string ((string_of_int pid) ^ ": " ^
"at t = " ^ (string_of_float now.tms_utime) ^ " : ");
prerr_string (string ^ "\n");
flush Pervasives.stderr;
end
(* iota n produces the list [0; 1; ...; n - 1] *)
let iota n = forall [] cons 0 n identity
(* interval a b produces the list [a; 1; ...; b - 1] *)
let interval a b = List.map ((+) a) (iota (b - a))
(*
* freeze a function, i.e., compute it only once on demand, and
* cache it into an array.
*)
let array n f =
let a = Array.init n (fun i -> lazy (f i))
in fun i -> Lazy.force a.(i)
let rec take n l =
match (n, l) with
(0, _) -> []
| (n, (a :: b)) -> a :: (take (n - 1) b)
| _ -> failwith "take"
let rec drop n l =
match (n, l) with
(0, _) -> l
| (n, (_ :: b)) -> drop (n - 1) b
| _ -> failwith "drop"
let either a b =
match a with
Some x -> x
| _ -> b