|
2 | 2 |
|
3 | 3 | public class ReadMe {
|
4 | 4 |
|
5 |
| - /** |
6 |
| - * summary of 2 most frequently used binary search templates. |
7 |
| - * one is return index during the search: |
8 |
| - * |
9 |
| - * while lo <= hi: |
10 |
| - * mid = (lo+hi)/2 |
11 |
| - * if nums[mid] == target: |
12 |
| - * return mid |
13 |
| - * if nums[mid] > target: |
14 |
| - * hi = mid-1 |
15 |
| - * else: |
16 |
| - * lo = mid+1 |
17 |
| - * return -1 |
18 |
| - * |
19 |
| - * Another more frequently used binary search template is for searching lowest element |
20 |
| - * satisfy function(i) == True (the array should satisfy function(x) == False for 0 to i-1, |
21 |
| - * and function(x) == True for i to n-1, and it is up to the question to define the function, |
22 |
| - * like in the find peak element problem, function(x) can be nums[x] < nums[x+1] ), |
23 |
| - * there are 2 ways to write it: |
24 |
| - * |
25 |
| - * while lo <= hi: |
26 |
| - * mid = (lo+hi)/2 |
27 |
| - * if function(mid): |
28 |
| - * hi = mid-1 |
29 |
| - * else: |
30 |
| - * lo = mid+1 |
31 |
| - * return lo |
32 |
| - * |
33 |
| - * or |
34 |
| - * |
35 |
| - * while lo < hi: |
36 |
| - * mid = (lo+hi)/2 |
37 |
| - * if function(mid): |
38 |
| - * hi = mid |
39 |
| - * else: |
40 |
| - * lo = mid+1 |
41 |
| - * |
42 |
| - * return lo ---> lowest element that satifies function(x) |
43 |
| - * return hi ---> highest element that not satifies function(x) |
44 |
| - * |
45 |
| - * No matter which one you use, just be careful about updating the hi and lo, |
46 |
| - * which could easily lead to infinite loop. |
47 |
| - * Some binary question is searching a floating number |
48 |
| - * and normally the question will give you a precision, |
49 |
| - * in which case you don't need to worry too much about the infinite loop |
50 |
| - * but your while condition will become something like "while lo+1e-7<hi" |
51 |
| - * |
| 5 | + /* |
| 6 | + |--x-----x------[v]vvvvvvvvvvvvvvvv| |
| 7 | + while (lo <= hi) { |
| 8 | + int mid = lo + (hi-lo)/2; |
| 9 | + if function(mid) |
| 10 | + hi = mid-1; |
| 11 | + else |
| 12 | + lo = mid+1; |
| 13 | + } |
| 14 | + return lo; ---> lowest element that satisfies function(x) |
| 15 | +
|
| 16 | + |vvvvvvvvvvvvv[v]-----x------x-------| |
| 17 | + while (lo <= hi) { |
| 18 | + int mid = lo + (hi-lo)/2; |
| 19 | + if function(mid) |
| 20 | + lo = mid+1; |
| 21 | + else |
| 22 | + hi = mid-1; |
| 23 | + } |
| 24 | + return hi; ---> highest element that satisfies function(x) |
| 25 | +
|
| 26 | + |----x----[v]----------x--------------| |
| 27 | + while (lo <= hi) { |
| 28 | + int mid = lo + (hi-lo)/2; |
| 29 | + if function(mid) == target |
| 30 | + return mid; |
| 31 | + if function(mid) < target |
| 32 | + lo = mid+1; |
| 33 | + else |
| 34 | + hi = mid-1; |
| 35 | + } |
| 36 | + return -1; |
| 37 | +
|
| 38 | + Note: function(x) is non-decreasing function |
| 39 | + */ |
| 40 | + |
| 41 | + /* |
52 | 42 | *
|
53 | 43 | * Collections.binarySearch
|
54 | 44 | * Array.binarySearch
|
|
0 commit comments