-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathCIRS-RL-kuaishou.py
368 lines (307 loc) · 15.4 KB
/
CIRS-RL-kuaishou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# -*- coding: utf-8 -*-
import datetime
import functools
import json
import os
import pickle
import time
import traceback
import gym
import torch
import argparse
import numpy as np
from core.collector_set import CollectorSet
from core.inputs import get_dataset_columns
from torch.utils.tensorboard import SummaryWriter
from core.collector import Collector
from core.state_tracker import StateTrackerTransformer
from core.user_model import compute_input_dim
from core.policy.ppo import PPOPolicy
from core.user_model_pairwise import UserModel_Pairwise
from environments.KuaishouRec.env.data_handler import get_df_kuairec, get_training_item_domination, load_item_feat
from environments.KuaishouRec.env.kuaishouEnv import KuaishouEnv
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
# from tianshou.trainer import onpolicy_trainer
from core.trainer.onpolicy import onpolicy_trainer
from tianshou.data import VectorReplayBuffer
from tianshou.utils.net.discrete import Actor, Critic
import logzero
from logzero import logger
from evaluation import Callback_Coverage_Count
# from util.upload import my_upload
from util.utils import create_dir, LoggerCallback_RL, LoggerCallback_Policy
from gym.envs.registration import register
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--env", type=str, default="KuaishouEnv-v0")
parser.add_argument("--user_model_name", type=str, default="DeepFM")
parser.add_argument("--model_name", type=str, default="CIRS")
parser.add_argument('--seed', default=2023, type=int)
parser.add_argument('--cuda', default=1, type=int)
parser.add_argument('--is_ab', dest='is_ab', action='store_true')
parser.add_argument('--no_ab', dest='is_ab', action='store_false')
parser.set_defaults(is_ab=True)
parser.add_argument('--cpu', dest='cpu', action='store_true')
parser.set_defaults(cpu=False)
parser.add_argument('--is_save', dest='is_save', action='store_true')
parser.add_argument('--no_save', dest='is_save', action='store_false')
parser.set_defaults(is_save=False)
# Env
parser.add_argument("--version", type=str, default="v1")
parser.add_argument('--tau', default=100, type=float)
parser.add_argument('--gamma_exposure', default=10, type=float)
parser.add_argument('--r_decay', default=1, type=float)
parser.add_argument('--leave_threshold', default=0, type=int)
parser.add_argument('--num_leave_compute', default=1, type=int)
parser.add_argument('--max_turn', default=30, type=int)
# state_tracker
parser.add_argument('--dim_state', default=20, type=int)
parser.add_argument('--dim_model', default=32, type=int)
parser.add_argument('--nhead', default=4, type=int)
# parser.add_argument('--max_len', default=100, type=int)
parser.add_argument('--force_length', type=int, default=10)
parser.add_argument("--top_rate", type=float, default=0.8)
# tianshou
parser.add_argument('--buffer-size', type=int, default=11000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--step-per-epoch', type=int, default=15000)
parser.add_argument('--repeat-per-collect', type=int, default=2)
parser.add_argument('--batch-size', type=int, default=1024)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--episode-per-collect', type=int, default=100)
parser.add_argument('--training-num', type=int, default=100)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--render', type=float, default=0)
# ppo
parser.add_argument('--vf-coef', type=float, default=0.25)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=1)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--recompute-adv', type=int, default=0)
parser.add_argument('--resume', action="store_true")
parser.add_argument("--save-interval", type=int, default=1000)
parser.add_argument("--read_message", type=str, default="UserModel1")
parser.add_argument("--message", type=str, default="CIRS")
args = parser.parse_known_args()[0]
return args
def main(args):
# %% 1. Create dirs
MODEL_SAVE_PATH = os.path.join(".", "saved_models", args.env, args.model_name)
create_dirs = [os.path.join(".", "saved_models"),
os.path.join(".", "saved_models", args.env),
MODEL_SAVE_PATH,
os.path.join(MODEL_SAVE_PATH, "logs")]
create_dir(create_dirs)
nowtime = datetime.datetime.fromtimestamp(time.time()).strftime("%Y_%m_%d-%H_%M_%S")
logger_path = os.path.join(MODEL_SAVE_PATH, "logs", "[{}]_{}.log".format(args.message, nowtime))
logzero.logfile(logger_path)
logger.info(json.dumps(vars(args), indent=2))
if args.cpu:
device = "cpu"
else:
device = torch.device("cuda:{}".format(args.cuda) if torch.cuda.is_available() else "cpu")
# %% 2. prepare user model
USERMODEL_Path = os.path.join(".", "saved_models", args.env, args.user_model_name)
model_parameter_path = os.path.join(USERMODEL_Path,
"{}_params_{}.pickle".format(args.user_model_name, args.read_message))
model_save_path = os.path.join(USERMODEL_Path, "{}_{}.pt".format(args.user_model_name, args.read_message))
with open(model_parameter_path, "rb") as file:
model_params = pickle.load(file)
model_params["device"] = "cpu"
user_model = UserModel_Pairwise(**model_params)
user_model.load_state_dict(torch.load(model_save_path))
# debug: for saving gpu space
# user_model = user_model.to(device)
# user_model.device = device
# user_model.linear_model.device = device
# user_model.linear.device = device
if hasattr(user_model, 'ab_embedding_dict') and args.is_ab:
alpha_u = user_model.ab_embedding_dict["alpha_u"].weight.detach().cpu().numpy()
beta_i = user_model.ab_embedding_dict["beta_i"].weight.detach().cpu().numpy()
else:
print("Note there are no available alpha and beta!!")
alpha_u = np.ones([7176, 1])
beta_i = np.ones([10729, 1])
# env = gym.make('VirtualTB-v0')
# %% 3. prepare envs
mat, lbe_user, lbe_photo, list_feat, df_photo_env, df_dist_small = KuaishouEnv.load_mat()
register(
id=args.env, # 'KuaishouEnv-v0',
entry_point='environments.KuaishouRec.env.kuaishouEnv:KuaishouEnv',
kwargs={"mat": mat,
"lbe_user": lbe_user,
"lbe_photo": lbe_photo,
"num_leave_compute": args.num_leave_compute,
"leave_threshold": args.leave_threshold,
"max_turn": args.max_turn,
"list_feat": list_feat,
"df_photo_env": df_photo_env,
"df_dist_small": df_dist_small}
)
env = gym.make(args.env)
# normed_mat = KuaishouEnv.compute_normed_reward(user_model, lbe_user, lbe_photo, df_photo_env,)
mat_save_path = os.path.join(USERMODEL_Path, "normed_mat-{}.pickle".format(args.read_message))
with open(mat_save_path, "rb") as file:
normed_mat = pickle.load(file)
register(
id='SimulatedEnv-v0',
entry_point='core.env.simulatedEnv.simulated_env:SimulatedEnv',
kwargs={"user_model": user_model,
"task_name": args.env,
"version": args.version,
"tau": args.tau,
"alpha_u": alpha_u,
"beta_i": beta_i,
"normed_mat": normed_mat,
"gamma_exposure": args.gamma_exposure,
"r_decay": args.r_decay}
)
simulatedEnv = gym.make("SimulatedEnv-v0")
state_shape = simulatedEnv.observation_space.shape or simulatedEnv.observation_space.n
action_shape = simulatedEnv.action_space.shape or simulatedEnv.action_space.n
max_action = simulatedEnv.action_space.high[0]
train_envs = DummyVectorEnv(
[lambda: gym.make("SimulatedEnv-v0", ) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
# test_envs = DummyVectorEnv(
# [lambda: gym.make(args.env) for _ in range(args.test_num)])
test_envs = DummyVectorEnv(
[lambda: gym.make(args.env) for _ in range(args.test_num)])
test_envs_NX_0 = DummyVectorEnv(
[lambda: gym.make(args.env) for _ in range(args.test_num)])
test_envs_NX_x = DummyVectorEnv(
[lambda: gym.make(args.env) for _ in range(args.test_num)])
test_envs_dict = {"FB": test_envs, "NX_0": test_envs_NX_0, f"NX_{args.force_length}": test_envs_NX_x}
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
# test_envs.seed(args.seed)
# %% 4. Setup model
user_columns, action_columns, feedback_columns, \
has_user_embedding, has_action_embedding, has_feedback_embedding = \
get_dataset_columns(args.dim_model, envname=args.env, env=env)
assert args.dim_model == compute_input_dim(action_columns)
state_tracker = StateTrackerTransformer(user_columns, action_columns, feedback_columns,
dim_model=args.dim_model, dim_state=args.dim_state,
dim_max_batch=max(args.training_num, args.test_num),
dataset=args.env,
has_user_embedding=has_user_embedding,
has_action_embedding=has_action_embedding,
has_feedback_embedding=has_feedback_embedding,
nhead=args.nhead, d_hid=128, nlayers=2, dropout=0.1,
device=device, seed=args.seed, MAX_TURN=args.max_turn).to(device)
net = Net(args.dim_state, hidden_sizes=args.hidden_sizes, device=device)
actor = Actor(net, env.mat.shape[1], device=device).to(device)
critic = Critic(net, device=device).to(device)
# critic = Critic(Net(state_shape, hidden_sizes=args.hidden_sizes, device=device), device=device).to(device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim_RL = torch.optim.Adam(
list(actor.parameters()) +
list(critic.parameters()), lr=args.lr)
optim_state = torch.optim.Adam(state_tracker.parameters(), lr=args.lr)
optim = [optim_RL, optim_state]
# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor, critic, optim, dist,
# state_tracker=state_tracker,
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
# dual_clip=args.dual_clip,
# dual clip cause monotonically increasing log_std :)
value_clip=args.value_clip,
gae_lambda=args.gae_lambda,
action_space=simulatedEnv.action_space,
action_bound_method="" if args.env == "KuaishouEnv-v0" else "clip",
action_scaling=False if args.env == "KuaishouEnv-v0" else True
)
# %% 5. Prepare the collectors and logs
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
preprocess_fn=state_tracker.build_state
)
# test_collector = Collector(
# policy, test_envs,
# preprocess_fn=state_tracker.build_state
# )
test_collector_set = CollectorSet(policy, test_envs_dict, args.buffer_size, args.test_num,
preprocess_fn=state_tracker.build_state,
force_length=args.force_length)
# log
log_path = os.path.join(MODEL_SAVE_PATH)
writer = SummaryWriter(log_path)
logger1 = BasicLogger(writer, save_interval=args.save_interval)
# df_val, df_user_val, df_item_val, list_feat = get_df_kuairec(name="small_matrix.csv")
df_item_val = load_item_feat(only_small=True)
item_feat_domination = get_training_item_domination()
policy.callbacks = [
Callback_Coverage_Count(test_collector_set, df_item_val, need_transform=True,
item_feat_domination=item_feat_domination,
lbe_photo=env.lbe_photo, top_rate=args.top_rate),
LoggerCallback_Policy(logger_path, args.force_length)]
# %% 6. Learn the model
model_save_path = os.path.join(MODEL_SAVE_PATH, "{}_{}.pt".format(args.model_name, args.message))
result = onpolicy_trainer(policy, train_collector, test_collector_set, state_tracker,
args.epoch, args.step_per_epoch,
args.repeat_per_collect, args.test_num, args.batch_size,
episode_per_collect=args.episode_per_collect,
# stop_fn=stop_fn,
# save_fn=save_fn,
logger=logger1,
resume_from_log=args.resume,
# save_checkpoint_fn=save_checkpoint_fn,
save_model_fn=functools.partial(save_model_fn,
model_save_path=model_save_path,
state_tracker=state_tracker,
optim=optim,
is_save=args.is_save)
)
# %% 7. save info
# model_save_path = os.path.join(MODEL_SAVE_PATH, "{}_{}.pt".format(args.model_name, args.message))
# torch.save(model.state_dict(), model_save_path)
torch.save({
'policy': policy.cpu().state_dict(),
'optim_RL': optim[0].state_dict(),
'optim_state': optim[1].state_dict(),
'state_tracker': state_tracker.cpu().state_dict(),
}, model_save_path)
def save_model_fn(epoch, policy, model_save_path, optim, state_tracker, is_save=False):
if not is_save:
return
model_save_path = model_save_path[:-3] + "-e{}".format(epoch) + model_save_path[-3:]
# torch.save(model.state_dict(), model_save_pa™th)
torch.save({
'policy': policy.state_dict(),
'optim_RL': optim[0].state_dict(),
'optim_state': optim[1].state_dict(),
'state_tracker': state_tracker.state_dict(),
}, model_save_path)
if __name__ == '__main__':
args = get_args()
try:
main(args)
except Exception as e:
var = traceback.format_exc()
print(var)
logzero.logger.error(var)