-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluation.py
371 lines (283 loc) · 13.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# -*- coding: utf-8 -*-
# @Time : 2021/7/26 5:01 下午
# @Author : Chongming GAO
# @FileName: evaluation.py
import numpy as np
import torch
from tqdm import tqdm
def get_feat_dominate_dict(df_item_val, all_acts_origin, item_feat_domination, top_rate=0.6):
if item_feat_domination is None: # for yahoo
return dict()
feat_dominate_dict = {}
recommended_item_features = df_item_val.loc[all_acts_origin]
if "feat" in item_feat_domination: # for kuairec and kuairand
sorted_items = item_feat_domination["feat"]
values = np.array([pair[1] for pair in sorted_items])
values = values / sum(values)
cumsum = values.cumsum()
ind = 0
for v in cumsum:
if v > top_rate:
break
ind += 1
if ind == 0:
ind += 1
dominated_values = np.array([pair[0] for pair in sorted_items])
dominated_values = dominated_values[:ind]
# dominated_value = sorted_items[0][0]
recommended_item_features = recommended_item_features.filter(regex="^feat", axis=1)
feat_numpy = recommended_item_features.to_numpy().astype(int)
dominate_array = np.zeros([len(feat_numpy)], dtype=bool)
for value in dominated_values:
equal_mat = (feat_numpy == value)
has_dominate = equal_mat.sum(axis=1)
dominate_array = dominate_array | has_dominate
rate = dominate_array.sum() / len(recommended_item_features)
feat_dominate_dict["ifeat_feat"] = rate
else: # for coat
for feat_name, sorted_items in item_feat_domination.items():
values = np.array([pair[1] for pair in sorted_items])
values = values / sum(values)
cumsum = values.cumsum()
ind = 0
for v in cumsum:
if v > top_rate:
break
ind += 1
if ind == 0:
ind += 1
dominated_values = np.array([pair[0] for pair in sorted_items])
dominated_values = dominated_values[:ind]
# recommended_item_features = recommended_item_features.filter(regex="^feat", axis=1)
feat_numpy = recommended_item_features[feat_name].to_numpy().astype(int)
dominate_array = np.zeros([len(feat_numpy)], dtype=bool)
for value in dominated_values:
has_dominate = (feat_numpy == value)
# has_dominate = equal_mat
dominate_array = dominate_array | has_dominate
rate = dominate_array.sum() / len(recommended_item_features)
# dominated_value = sorted_items[0][0]
# rate = (recommended_item_features[feat_name] == dominated_value).sum() / len(recommended_item_features)
feat_dominate_dict["ifeat_" + feat_name] = rate
return feat_dominate_dict
def interactive_evaluation(model, env, dataset_val, is_softmax, epsilon, is_ucb, k, need_transform,
num_trajectory, item_feat_domination, remove_recommended, force_length=0, top_rate=0.6):
cumulative_reward = 0
total_click_loss = 0
total_turns = 0
all_acts = []
for i in tqdm(range(num_trajectory), desc=f"evaluate static method in {env.__str__()}"):
user_ori = env.reset()
if need_transform:
user = env.lbe_user.inverse_transform(user_ori)[0]
else:
user = user_ori
acts = []
done = False
while not done:
recommended_id_transform, recommended_id_raw, reward_pred = model.recommend_k_item(
user, dataset_val, k=k, is_softmax=is_softmax, epsilon=epsilon, is_ucb=is_ucb,
recommended_ids=acts if remove_recommended else [])
if need_transform:
assert recommended_id_transform == env.lbe_photo.transform([recommended_id_raw])[0]
acts.append(recommended_id_transform)
state, reward, done, info = env.step(recommended_id_transform)
total_turns += 1
# metric 1
cumulative_reward += reward
# metric 2
click_loss = np.absolute(reward_pred - reward)
total_click_loss += click_loss
if done:
if force_length > 0: # do not end here
env.cur_user = user_ori[0]
done = False
else:
break
if force_length > 0 and len(acts) >= force_length:
done = True
break
all_acts.extend(acts)
ctr = cumulative_reward / total_turns
click_loss = total_click_loss / total_turns
hit_item = len(set(all_acts))
num_items = len(dataset_val.df_photo_env)
CV = hit_item / num_items
CV_turn = hit_item / len(all_acts)
# eval_result_RL = {"CTR": ctr, "click_loss": click_loss, "trajectory_len": total_turns / num_trajectory,
# "trajectory_reward": cumulative_reward / num_trajectory}
eval_result_RL = {
"click_loss": click_loss,
"CV": f"{CV:.5f}",
"CV_turn": f"{CV_turn:.5f}",
"ctr": ctr,
"len_tra": total_turns / num_trajectory,
"R_tra": cumulative_reward / num_trajectory}
if need_transform:
all_acts_origin = env.lbe_photo.inverse_transform(all_acts)
else:
all_acts_origin = all_acts
feat_dominate_dict = get_feat_dominate_dict(dataset_val.df_photo_env, all_acts_origin, item_feat_domination, top_rate=top_rate)
eval_result_RL.update(feat_dominate_dict)
if remove_recommended:
eval_result_RL = {f"NX_{force_length}_" + k: v for k, v in eval_result_RL.items()}
return eval_result_RL
def test_static_model_in_RL_env(model, env, dataset_val, is_softmax=True, epsilon=0, is_ucb=False, k=1,
need_transform=False, num_trajectory=100, item_feat_domination=None, force_length=10, top_rate=0.6):
eval_result_RL = {}
eval_result_standard = interactive_evaluation(model, env, dataset_val, is_softmax, epsilon, is_ucb, k,
need_transform, num_trajectory, item_feat_domination,
remove_recommended=False, force_length=0, top_rate=top_rate)
# No overlap and end with the env rule
eval_result_NX_0 = interactive_evaluation(model, env, dataset_val, is_softmax, epsilon, is_ucb, k,
need_transform, num_trajectory, item_feat_domination,
remove_recommended=True, force_length=0, top_rate=top_rate)
# No overlap and end with explicit length
eval_result_NX_x = interactive_evaluation(model, env, dataset_val, is_softmax, epsilon, is_ucb, k,
need_transform, num_trajectory, item_feat_domination,
remove_recommended=True, force_length=force_length,top_rate=top_rate)
eval_result_RL.update(eval_result_standard)
eval_result_RL.update(eval_result_NX_0)
eval_result_RL.update(eval_result_NX_x)
return eval_result_RL
def test_kuaishou(model, env, dataset_val, is_softmax=True, epsilon=0, is_ucb=False):
cumulative_reward = 0
total_click_loss = 0
total_turns = 0
num_trajectory = 200
all_acts = []
for i in range(num_trajectory):
user = env.reset()
real_user_id = env.lbe_user.inverse_transform(user)
acts = []
done = False
while not done:
recommendation, reward_pred = model.recommend_k_item(real_user_id[0], dataset_val, k=1, is_softmax=is_softmax, epsilon=epsilon, is_ucb=is_ucb)
# if need_transform:
rec_small = env.lbe_photo.transform([recommendation])[0]
acts.append(rec_small)
state, reward, done, info = env.step(rec_small)
total_turns += 1
# metric 1
cumulative_reward += reward
# metric 2
click_loss = np.absolute(reward_pred - reward)
total_click_loss += click_loss
if done:
break
all_acts.extend(acts)
ctr = cumulative_reward / total_turns
click_loss = total_click_loss / total_turns
hit_item = len(set(all_acts))
num_items = len(dataset_val.df_photo_env)
CV = hit_item / num_items
CV_turn = hit_item / len(all_acts)
eval_result_RL = {
"click_loss": click_loss,
"CV": f"{CV:.5f}",
"CV_turn": f"{CV_turn:.5f}",
"ctr": ctr,
"len_tra": total_turns / num_trajectory,
"R_tra": cumulative_reward / num_trajectory}
# if is_ucb:
# eval_result_RL.update({"ucb_n": model.n_each})
return eval_result_RL
def test_taobao(model, env, epsilon=0):
# test the model in the interactive system
cumulative_reward = 0
total_click_loss = 0
total_turns = 0
num_trajectory = 100
for i in range(num_trajectory):
features = env.reset()
done = False
while not done:
res = model(torch.FloatTensor(features).to(model.device).unsqueeze(0)).to('cpu').squeeze()
item_feat_predict = res[model.y_index['feat_item'][0]:model.y_index['feat_item'][1]]
action = item_feat_predict.detach().numpy()
if epsilon > 0 and np.random.random() < epsilon:
# Activate epsilon greedy
action = np.random.random(action.shape)
reward_pred = res[model.y_index['y'][0]:model.y_index['y'][1]]
features, reward, done, info = env.step(action)
total_turns += 1
# metric 1
cumulative_reward += reward
# metric 2
click_loss = np.absolute(float(reward_pred.detach().numpy()) - reward)
total_click_loss += click_loss
if done:
break
ctr = cumulative_reward / total_turns # /10
click_loss = total_click_loss / total_turns
# print('CTR: %.2f'.format(ctr))
eval_result_RL = {"ctr": ctr,
"click_loss": click_loss,
"len_tra":total_turns/num_trajectory,
"R_tra": cumulative_reward/num_trajectory} #/10}
return eval_result_RL
class Callback_Coverage_Count():
def __init__(self, test_collector_set, df_item_val, need_transform, item_feat_domination, lbe_photo, top_rate):
self.collector_dict = test_collector_set.collector_dict
self.num_items = test_collector_set.env.mat[0].shape[1]
# self.env = env
self.df_item_val = df_item_val
self.need_transform = need_transform
self.item_feat_domination = item_feat_domination
self.lbe_photo = lbe_photo
self.top_rate = top_rate
def on_epoch_begin(self, epoch):
pass
def on_train_begin(self):
pass
def on_train_end(self):
pass
def on_epoch_end(self, epoch, results=None, **kwargs):
def get_actions(buffer, indices):
num_tests = len(indices)
live_mat = np.zeros([0, num_tests], dtype=bool)
act_mat = np.zeros([0, num_tests], dtype=bool)
is_end = np.zeros([num_tests], dtype=bool)
# indices = results["idxs"]
while not all(is_end):
acts = buffer.act[indices]
done = buffer.done[indices]
act_mat = np.vstack([act_mat, acts])
live_mat = np.vstack([live_mat, ~is_end])
is_end[done] = True
indices = buffer.next(indices)
all_acts = act_mat[live_mat]
if self.need_transform:
all_acts_origin = self.lbe_photo.inverse_transform(all_acts)
else:
all_acts_origin = all_acts
feat_dominate_dict = get_feat_dominate_dict(self.df_item_val, all_acts_origin, self.item_feat_domination, top_rate=self.top_rate)
return feat_dominate_dict
def get_count_results_for_one_collector(buffer):
live_ind = np.ones([results["n/ep"]], dtype=bool)
inds = buffer.last_index
all_acts = []
res = {}
while any(live_ind):
acts = buffer[inds].act
# print(acts)
all_acts.extend(acts)
live_ind = buffer.prev(inds) != inds
inds = buffer.prev(inds[live_ind])
hit_item = len(set(all_acts))
res["CV"] = hit_item / self.num_items
res["CV_turn"] = hit_item / len(all_acts)
return res
results_all = {}
for name, collector in self.collector_dict.items():
buffer = collector.buffer
res = get_count_results_for_one_collector(buffer)
res_k = {name + "_" + k: v for k, v in res.items()} if name != "FB" else res
results_all.update(res_k)
indices = results[name + "_idxs"] if name != "FB" else results["idxs"]
feat_dominate_dict = get_actions(buffer, indices)
feat_dominate_dict_k = {name + "_" + k: v for k, v in
feat_dominate_dict.items()} if name != "FB" else feat_dominate_dict
results_all.update(feat_dominate_dict_k)
results.update(results_all)
return results