-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
48 lines (43 loc) · 1.26 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from torch.utils.data import DataLoader
from sketch2color_dataset import Sketch2ColorDataset
def get_dataloader(
dataset,
phase,
batch_size,
workers=8,
input_height=256,
input_width=256,
processed_dir='./processed'
):
"""
dataset: the name of dataset.
phase: use 'train' for training, 'val' for validation, 'test' for testing
batch_size: the size of batch
workers: the number of workers used for making batch
input_height: the height of input image.
input_width: the width of input image.
processed_dir: directory which contains datasets.
"""
assert phase in ['train', 'val', 'test']
dataset = Sketch2ColorDataset(dataset, phase, input_height, input_width, processed_dir)
if phase == 'train':
return DataLoader(
dataset=dataset,
num_workers=workers,
batch_size=batch_size,
shuffle=True
)
elif phase == 'val':
return DataLoader(
dataset=dataset,
num_workers=workers,
batch_size=batch_size,
shuffle=False
)
else:
return DataLoader(
dataset=dataset,
num_workers=workers,
batch_size=batch_size,
shuffle=False
)