forked from songyouwei/ABSA-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dependency_graph.py
57 lines (47 loc) · 1.83 KB
/
dependency_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
import numpy as np
import spacy
import pickle
from spacy.tokens import Doc
class WhitespaceTokenizer(object):
def __init__(self, vocab):
self.vocab = vocab
def __call__(self, text):
words = text.split()
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
nlp = spacy.load('en_core_web_sm')
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab)
def dependency_adj_matrix(text):
# https://spacy.io/docs/usage/processing-text
tokens = nlp(text)
words = text.split()
matrix = np.zeros((len(words), len(words))).astype('float32')
assert len(words) == len(list(tokens))
for token in tokens:
matrix[token.i][token.i] = 1
for child in token.children:
matrix[token.i][child.i] = 1
matrix[child.i][token.i] = 1
return matrix
def process(filename):
fin = open(filename, 'r', encoding='utf-8', newline='\n', errors='ignore')
lines = fin.readlines()
fin.close()
idx2graph = {}
fout = open(filename+'.graph', 'wb')
for i in range(0, len(lines), 3):
text_left, _, text_right = [s.strip() for s in lines[i].partition("$T$")]
aspect = lines[i + 1].strip()
adj_matrix = dependency_adj_matrix(text_left+' '+aspect+' '+text_right)
idx2graph[i] = adj_matrix
pickle.dump(idx2graph, fout)
fout.close()
if __name__ == '__main__':
process('./datasets/acl-14-short-data/train.raw')
process('./datasets/acl-14-short-data/test.raw')
process('./datasets/semeval14/Restaurants_Train.xml.seg')
process('./datasets/semeval14/Restaurants_Test_Gold.xml.seg')
process('./datasets/semeval14/Laptops_Train.xml.seg')
process('./datasets/semeval14/Laptops_Test_Gold.xml.seg')