forked from salesforce/BLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fashion200k.py
144 lines (113 loc) · 5.87 KB
/
train_fashion200k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import cv2
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch import optim
from data import create_dataset, create_sampler, create_loader
from models.combiner import CombinerModel
from models.blip_itm import blip_itm
from utils import update_train_running_results, set_train_bar_description
def main(args, config):
device = torch.device(args.device)
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating fashion200k dataset")
train_dataset, test_dataset = create_dataset('fashion200k', config)
samplers = [None, None]
train_loader, test_loader = create_loader([train_dataset, test_dataset], samplers,
batch_size=[
config['batch_size_train']]+[config['batch_size_test']],
num_workers=[4, 4],
is_trains=[True, False],
collate_fns=[None, None])
# init combiner
combiner = CombinerModel(
config['v_dim'], config['l_dim'], config['dim'], config['num_heads'])
combiner = combiner.to(device)
# Define the optimizer, the loss and the grad scaler
optimizer = optim.Adam(combiner.parameters(), lr=config['combiner_lr'])
crossentropy_criterion = nn.CrossEntropyLoss()
scaler = torch.cuda.amp.GradScaler()
# init BLIP pretrained model to use their encoders
print('loading pretrained BLIP')
blip = blip_itm(pretrained=config['model_url'], image_size=config['image_size'], vit = 'base')
blip = blip.to(device)
print('BLIP loaded succesfuly')
print('========== Start training loop ========== ')
for epoch in range(config['num_epochs']):
if torch.cuda.is_available():
combiner.train()
train_running_results = {
'images_in_epoch': 0, 'accumulated_train_loss': 0}
train_bar = tqdm(train_loader, ncols=150)
for idx, (out) in enumerate(train_bar): # Load a batch of data
reference_images = out['source_img_data']
target_images = out['target_img_data']
captions = out['mod']
images_in_batch = reference_images.size(0)
optimizer.zero_grad()
step = len(train_bar) * epoch + idx
reference_images = reference_images.to(
device, non_blocking=True)
target_images = target_images.to(device, non_blocking=True)
input_captions: list = np.array(
captions).T.flatten().tolist()
text_inputs = blip.tokenizer(input_captions, padding='max_length', truncation=True, max_length=config['max_length'], return_tensors="pt").to(
device) # FIXME double check if correct
# Extract the features with BLIP here
with torch.no_grad():
# extract image features
reference_image_features = blip.visual_encoder(reference_images)
target_image_features = blip.visual_encoder(target_images)
# extract text features
text_features = blip.text_encoder(text_inputs.input_ids, attention_mask=text_inputs.attention_mask,
return_dict=True, mode='text')
# text_features = {last_hidden_state, pooler_output}
# https://github.com/huggingface/transformers/issues/7540#issuecomment-704155218
with torch.cuda.amp.autocast():
# feed extracted features into combiner
combiner_out_v, combiner_out_l = combiner(reference_image_features,
text_features['last_hidden_state'], text_inputs.attention_mask[0, :])
# cls tokens are the first token in the sequence (for both vision & text), use a projection layer to ensure their dimensions are the same
image_feat = F.normalize(combiner.vision_proj(combiner_out_v[:, 0, :]), dim=-1)
text_feat = F.normalize(combiner.text_proj(combiner_out_l[:, 0, :]), dim=-1)
target_image_feat = F.normalize(combiner.vision_proj(target_image_features[:, 0, :]), dim=-1)
# calculate cosine similarity, which is used for contrastive loss
sim = image_feat @ target_image_feat.t()
ground_truth = torch.arange(images_in_batch, dtype=torch.long, device=device)
loss = crossentropy_criterion(sim, ground_truth)
break
# Backpropagate and update the weights
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
update_train_running_results(
train_running_results, loss, images_in_batch)
set_train_bar_description(
train_bar, epoch, config['num_epochs'], train_running_results)
train_epoch_loss = float(
train_running_results['accumulated_train_loss'] / train_running_results['images_in_epoch'])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/fashion200k.yaml')
parser.add_argument('--device', default='cuda')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
main(args, config)