-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCodeBook.txt
72 lines (54 loc) · 3.22 KB
/
CodeBook.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
I. Dataset description and variables.
The dataset was originally obtained from https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip
Original description of the variables and original study design can be found at http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.
Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).
Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).
These signals were used to estimate variables of the feature vector for each pattern:
'-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.
tBodyAcc-XYZ
tGravityAcc-XYZ
tBodyAccJerk-XYZ
tBodyGyro-XYZ
tBodyGyroJerk-XYZ
tBodyAccMag
tGravityAccMag
tBodyAccJerkMag
tBodyGyroMag
tBodyGyroJerkMag
fBodyAcc-XYZ
fBodyAccJerk-XYZ
fBodyGyro-XYZ
fBodyAccMag
fBodyAccJerkMag
fBodyGyroMag
fBodyGyroJerkMag
The set of variables that were estimated from these signals are:
mean(): Mean value
std(): Standard deviation
mad(): Median absolute deviation
max(): Largest value in array
min(): Smallest value in array
sma(): Signal magnitude area
energy(): Energy measure. Sum of the squares divided by the number of values.
iqr(): Interquartile range
entropy(): Signal entropy
arCoeff(): Autorregresion coefficients with Burg order equal to 4
correlation(): correlation coefficient between two signals
maxInds(): index of the frequency component with largest magnitude
meanFreq(): Weighted average of the frequency components to obtain a mean frequency
skewness(): skewness of the frequency domain signal
kurtosis(): kurtosis of the frequency domain signal
bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
angle(): Angle between to vectors.
Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:
gravityMean
tBodyAccMean
tBodyAccJerkMean
tBodyGyroMean
tBodyGyroJerkMean
II. Data Summary
Read.me contains description of the script.
Script takes 3 inputs, a data set from the test folder, a dataset from train folder, and the features file
Script will generate a combinedDataSet.txt with only the mean and standard deviation values along with a final tidyDataSet.txt
with the average for each column