forked from Zhongdao/gcn_clustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
206 lines (176 loc) · 7.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
###################################################################
# File Name: train.py
# Author: Zhongdao Wang
# mail: [email protected]
# Created Time: Thu 06 Sep 2018 10:08:49 PM CST
###################################################################
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import os.path as osp
import sys
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils.data import DataLoader
import model
from feeder.feeder import Feeder
from utils import to_numpy
from utils.meters import AverageMeter
from utils.serialization import load_checkpoint
from utils.utils import bcubed
from utils.graph import graph_propagation, graph_propagation_soft, graph_propagation_naive
from sklearn.metrics import normalized_mutual_info_score, precision_score, recall_score
def single_remove(Y, pred):
single_idcs = np.zeros_like(pred)
pred_unique = np.unique(pred)
for u in pred_unique:
idcs = pred == u
if np.sum(idcs) == 1:
single_idcs[np.where(idcs)[0][0]] = 1
remain_idcs = [i for i in range(len(pred)) if not single_idcs[i]]
remain_idcs = np.asarray(remain_idcs)
return Y[remain_idcs], pred[remain_idcs]
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.benchmark = True
valset = Feeder(args.val_feat_path,
args.val_knn_graph_path,
args.val_label_path,
args.seed,
args.k_at_hop,
args.active_connection,
train=False)
valloader = DataLoader(
valset, batch_size=args.batch_size,
num_workers=args.workers, shuffle=False, pin_memory=True)
ckpt = load_checkpoint(args.checkpoint)
net = model.gcn()
net.load_state_dict(ckpt['state_dict'])
net = net.cuda()
knn_graph = valset.knn_graph
knn_graph_dict = list()
for neighbors in knn_graph:
knn_graph_dict.append(dict())
for n in neighbors[1:]:
knn_graph_dict[-1][n] = []
criterion = nn.CrossEntropyLoss().cuda()
edges, scores = validate(valloader, net, criterion)
np.save('edges', edges)
np.save('scores', scores)
#edges=np.load('edges.npy')
#scores = np.load('scores.npy')
clusters = graph_propagation(edges, scores, max_sz=900, step=0.6, pool='avg' )
final_pred = clusters2labels(clusters, len(valset))
labels = valset.labels
print('------------------------------------')
print('Number of nodes: ', len(labels))
print('Precision Recall F-Sore NMI')
p,r,f = bcubed(labels, final_pred)
nmi = normalized_mutual_info_score(final_pred, labels)
print(('{:.4f} '*4).format(p,r,f, nmi))
labels, final_pred = single_remove(labels, final_pred)
print('------------------------------------')
print('After removing singleton culsters, number of nodes: ', len(labels))
print('Precision Recall F-Sore NMI')
p,r,f = bcubed(final_pred, labels)
nmi = normalized_mutual_info_score(final_pred, labels)
print(('{:.4f} '*4).format(p,r,f, nmi))
def clusters2labels(clusters, n_nodes):
labels = (-1)* np.ones((n_nodes,))
for ci, c in enumerate(clusters):
for xid in c:
labels[xid.name] = ci
assert np.sum(labels<0) < 1
return labels
def make_labels(gtmat):
return gtmat.view(-1)
def validate(loader, net, crit):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
accs = AverageMeter()
precisions = AverageMeter()
recalls = AverageMeter()
net.eval()
end = time.time()
edges = list()
scores = list()
for i, ((feat, adj, cid, h1id, node_list), gtmat) in enumerate(loader):
data_time.update(time.time() - end)
feat, adj, cid, h1id, gtmat = map(lambda x: x.cuda(),
(feat, adj, cid, h1id, gtmat))
pred = net(feat, adj, h1id)
labels = make_labels(gtmat).long()
loss = crit(pred, labels)
pred = F.softmax(pred, dim=1)
p,r, acc = accuracy(pred, labels)
losses.update(loss.item(),feat.size(0))
accs.update(acc.item(),feat.size(0))
precisions.update(p, feat.size(0))
recalls.update(r,feat.size(0))
batch_time.update(time.time()- end)
end = time.time()
if i % args.print_freq == 0:
print('[{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {losses.val:.3f} ({losses.avg:.3f})\n'
'Accuracy {accs.val:.3f} ({accs.avg:.3f})\t'
'Precison {precisions.val:.3f} ({precisions.avg:.3f})\t'
'Recall {recalls.val:.3f} ({recalls.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
data_time=data_time, losses=losses, accs=accs,
precisions=precisions, recalls=recalls))
node_list = node_list.long().squeeze().numpy()
bs = feat.size(0)
for b in range(bs):
cidb = cid[b].int().item()
nl = node_list[b]
for j,n in enumerate(h1id[b]):
n = n.item()
edges.append([nl[cidb], nl[n]])
scores.append(pred[b*args.k_at_hop[0]+j,1].item())
edges = np.asarray(edges)
scores = np.asarray(scores)
return edges, scores
def accuracy(pred, label):
pred = torch.argmax(pred, dim=1).long()
acc = torch.mean((pred == label).float())
pred = to_numpy(pred)
label = to_numpy(label)
p = precision_score(label, pred)
r = recall_score(label, pred)
return p,r,acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--workers', default=16, type=int)
parser.add_argument('--print_freq', default=40, type=int)
# Optimization args
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--k-at-hop', type=int, nargs='+', default=[20,5])
parser.add_argument('--active_connection', type=int, default=5)
# Validation args
parser.add_argument('--val_feat_path', type=str, metavar='PATH',
default=osp.join(working_dir, '../facedata/1024.fea.npy'))
parser.add_argument('--val_knn_graph_path', type=str, metavar='PATH',
default=osp.join(working_dir, '../facedata/knn.graph.1024.bf.npy'))
parser.add_argument('--val_label_path', type=str, metavar='PATH',
default=osp.join(working_dir, '../facedata/1024.labels.npy'))
# Test args
parser.add_argument('--checkpoint', type=str, metavar='PATH', default='./logs/logs/best.ckpt')
args = parser.parse_args()
main(args)