forked from google-deepmind/gemma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gemma.py
462 lines (379 loc) · 13.8 KB
/
test_gemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# %%
import numpy as np
import kagglehub
from jax.sharding import Mesh
from hydra.core.global_hydra import GlobalHydra
import jax.numpy as jnp
import jax
from flax.training import checkpoints
from einops import rearrange, einsum
import sys
import os
from importlib import reload
from gemma import params as params_lib
from gemma import modules
from gemma import transformer as transformer_lib
os.environ["XLA_FLAGS"] = (
"--xla_force_host_platform_device_count=8" # Use 8 CPU devices
)
kagglehub.login()
kagglehub.model_download("google/gemma-2/flax/gemma2-2b")
# %%
model_dir = "/Users/clankur/.cache/kagglehub/models"
gemma_dir = f"{model_dir}/google/gemma-2/flax/gemma2-2b/1"
checkpoint_dir = f"{model_dir}/google/gemma-2/flax/gemma2-2b/1/gemma2-2b"
# %%
batch_size = 1
seq_length = 5 # tokens.targets.shape[-1]
# %%
params = params_lib.load_and_format_params(checkpoint_dir)
# %%
reload(modules)
reload(transformer_lib)
gemma2_config = transformer_lib.TransformerConfig.gemma2_2b(1024)
gemma2_config = gemma2_config.from_params(params=params)
transformer = transformer_lib.Transformer(gemma2_config)
# %%
dummy_input = jnp.zeros((batch_size, seq_length)).astype(jnp.int32)
dummy_positions = jnp.arange(seq_length)[None, :]
dummy_attention_mask = jnp.tril(
jnp.ones((batch_size, seq_length, seq_length), dtype=jnp.bool_), 0
)
(logits, cache), intermediates = transformer.apply(
{'params': params["transformer"]},
dummy_input,
dummy_positions,
None,
dummy_attention_mask,
capture_intermediates=True
)
def flatten_intermediates(intermediates):
flattened = {}
num_layers = len(
[key for key in intermediates['intermediates'] if key.startswith('layer_')])
def extract_value(d):
if '__call__' in d:
return d['__call__'][0]
for v in d.values():
if isinstance(v, dict):
return extract_value(v)
return None
main_keys = ['pre_attention_norm', 'post_attention_norm',
'pre_ffw_norm', 'mlp', 'post_ffw_norm', "final_output"]
attn_keys = ['q_einsum', 'kv_einsum', "reshaped_scaled_q",
'attn_vec_einsum', 'roped_q', "roped_k", "scaled_q",
"att_logits", "capped_logits", "att_wei", "a_out_premix",
"a_out", "masked_logits"
]
for key in main_keys + attn_keys:
layer_values = []
for i in range(num_layers):
layer_key = f'layer_{i}'
if key in main_keys:
value = extract_value(
intermediates['intermediates'][layer_key][key])
else: # attn keys
value = extract_value(
intermediates['intermediates'][layer_key]['attn'][key])
if value is not None:
layer_values.append(value)
if layer_values:
flattened[key] = jnp.stack(layer_values)
# Handle special cases
flattened['tracked_embed'] = intermediates['intermediates']['tracked_embed']['__call__'][0]
flattened['final_norm'] = intermediates['intermediates']['final_norm']['__call__'][0]
flattened['final_softcap'] = intermediates['intermediates']['final_softcap']['__call__'][0]
flattened['tracked_unembed'] = intermediates['intermediates']['tracked_unembed']['__call__'][0]
return flattened
intermediates = flatten_intermediates(intermediates)
class Hparams:
d_model: int = gemma2_config.embed_dim
n_q_per_kv: int = gemma2_config.num_heads // gemma2_config.num_kv_heads
n_kv: int = gemma2_config.num_kv_heads
d_head: int = gemma2_config.head_dim
layers: int = gemma2_config.num_layers
vocab: int = gemma2_config.num_embed
d_ff: int = gemma2_config.hidden_dim
window_size: int = gemma2_config.sliding_window_size
attn_softcap: float = gemma2_config.attn_logits_soft_cap
final_softcap: float = gemma2_config.final_logit_softcap
rope_max_timescale: int = 10_000
# %%
def compare_tensors(tensor1: jax.Array, tensor2: jax.Array, tolerance: float = 1e-5) -> tuple[bool, bool]:
if tensor1.shape != tensor2.shape:
return False, False
exact_match = jnp.array_equal(tensor1, tensor2)
max_diff = jnp.max(jnp.abs(tensor1 - tensor2))
approximate_match = max_diff <= tolerance
return exact_match, approximate_match
def rms_norm(x):
var = jnp.mean(jnp.square(x), axis=-1, keepdims=True)
return x * jax.lax.rsqrt(var + 1e-06)
def flatten_params_to_tensors(params, h):
# Use h.n_layers instead of counting
num_layers = h.layers
# Process embeddings
embed = params['transformer']['embedder']['input_embedding']
final_layer_norm = params['transformer']['final_norm']['scale']
# Initialize lists to hold layer-specific tensors
pre_attention_norms = []
pre_ffw_norms = []
attn_qs = []
attn_kvs = []
attn_os = []
post_attention_norms = []
mlp_gates = []
mlp_ups = []
mlp_downs = []
post_ffw_norms = []
# Process each layer
for i in range(num_layers):
layer_key = f'layer_{i}'
layer = params['transformer'][layer_key]
# Attention related tensors
pre_attention_norms.append(layer['pre_attention_norm']['scale'])
pre_ffw_norms.append(layer['pre_ffw_norm']['scale'])
w_q = layer['attn']['q_einsum']['w']
w_q = rearrange(w_q, "(n_kv n_q_per_kv) d_model d_head -> d_model n_kv n_q_per_kv d_head",
n_q_per_kv=h.n_q_per_kv, n_kv=h.n_kv)
attn_qs.append(w_q)
w_kv = layer['attn']['kv_einsum']['w']
w_kv = rearrange(w_kv, "k_v n_kv M_dim H_dim -> k_v M_dim n_kv H_dim")
attn_kvs.append(w_kv)
w_o = layer['attn']['attn_vec_einsum']['w']
attn_os.append(w_o)
# MLP related tensors
post_attention_norms.append(layer['post_attention_norm']['scale'])
mlp_gates.append(layer['mlp']['gating_einsum'][0])
mlp_ups.append(layer['mlp']['gating_einsum'][1])
w_down = rearrange(layer['mlp']['linear'], "F M -> M F")
mlp_downs.append(w_down)
post_ffw_norms.append(layer['post_ffw_norm']['scale'])
# Stack layer-specific tensors
pre_attention_norm = jnp.stack(pre_attention_norms)
pre_ffw_norm = jnp.stack(pre_ffw_norms)
attn_q = jnp.stack(attn_qs)
attn_kv = jnp.stack(attn_kvs)
attn_o = jnp.stack(attn_os)
post_attention_norm = jnp.stack(post_attention_norms)
mlp_gate = jnp.stack(mlp_gates)
mlp_up = jnp.stack(mlp_ups)
mlp_down = jnp.stack(mlp_downs)
post_ffw_norm = jnp.stack(post_ffw_norms)
return (
embed,
pre_attention_norm,
pre_ffw_norm,
attn_q,
attn_kv,
attn_o,
post_attention_norm,
mlp_gate,
mlp_up,
mlp_down,
post_ffw_norm,
final_layer_norm
)
class RopeTable:
def __init__(self, max_len: int, h: Hparams) -> None:
head_dim = h.d_head
position = jnp.arange(max_len, dtype=jnp.int32)
fraction = 2 * jnp.arange(0, head_dim // 2) / head_dim
timescale = h.rope_max_timescale**fraction
sinusoid_inp = jnp.float32(
position[:, jnp.newaxis]) / timescale[jnp.newaxis, :]
self.sin = jnp.sin(sinusoid_inp)
self.cos = jnp.cos(sinusoid_inp)
def apply(self, rearrange_spec, x):
x1, x2 = jnp.split(x, 2, axis=-1)
sin = rearrange(self.sin, rearrange_spec)
cos = rearrange(self.cos, rearrange_spec)
r1 = x1 * cos - x2 * sin
r2 = x2 * cos + x1 * sin
return jnp.concatenate([r1, r2], axis=-1).astype(x.dtype)
# %%
L = seq_length
h = Hparams()
K_MASK = -2.3819763e38
rope_table = RopeTable(seq_length, h)
use_local_window_attn = False
causal_mask = jnp.tril(
jnp.ones((batch_size, L, L), dtype=jnp.bool_), 0
)[..., jnp.newaxis, jnp.newaxis, :]
local_mask = jnp.triu(
jnp.ones((batch_size, L, L), dtype=jnp.bool_), 1 - h.window_size
)[..., jnp.newaxis, jnp.newaxis, :]
# %%
# %%
(embed,
m_ln1,
m_ln2,
m_w_q,
m_w_kv,
m_w_o,
m_post_attn_ln,
m_w_gate,
m_w_up,
m_w_down,
m_post_ffn_ln,
m_final_layer_norm) = flatten_params_to_tensors(params, h)
# %%
i = 0
ids = dummy_input
x = embed[ids]
x *= jnp.sqrt(h.d_model)
print(compare_tensors(x, intermediates['tracked_embed']))
def loop_body(carry, layer_weights):
w_q, w_kv, w_o, w_gate, w_up, w_down, ln1, ln2, post_attn_ln, post_ffn_ln = layer_weights
(x, use_local_window_attn, i) = carry
jax.debug.print('layer {i} \n', i=i)
print('initial carry dtype \n', x.dtype)
nx = rms_norm(x) * (1.0 + ln1)
jax.debug.print("normed x alignment={b}", b=compare_tensors(
nx, intermediates['pre_attention_norm'][i]))
# realigning
# nx = intermediates['pre_attention_norm'][i]
q = einsum(
nx, w_q, "B Qlen d_model, d_model n_kv n_q_per_kv d_head -> B Qlen n_kv n_q_per_kv d_head"
).astype(x)
k, v = einsum(
nx, w_kv, "B Klen d_model, k_v d_model n_kv d_head -> k_v B Klen n_kv d_head"
).astype(x)
q = rope_table.apply("L d -> 1 L 1 1 d", q)
k = rope_table.apply("L d -> 1 L 1 d", k)
q_preatt_scalar = h.d_head ** -0.5
q_scaled = q * q_preatt_scalar
jax.debug.print("roped_q alignment = {b}", b=compare_tensors(
q_scaled, intermediates['reshaped_scaled_q'][i]))
jax.debug.print("roped_k alignment = {b}", b=compare_tensors(
k, intermediates['roped_k'][i]))
logits = einsum(
q_scaled, k, 'B Qlen n_kv n_q_per_kv d_head, B Klen n_kv d_head -> B Qlen n_kv n_q_per_kv Klen')
logits = jnp.tanh(logits / h.attn_softcap) * h.attn_softcap
logits_test = rearrange(
logits, "B Qlen n_kv n_q_per_kv Klen -> B Qlen (n_kv n_q_per_kv) Klen")
jax.debug.print("capped logits alignment={b}", b=compare_tensors(
logits_test, intermediates['capped_logits'][i]))
attn_mask = jax.lax.select(
use_local_window_attn,
jnp.logical_and(causal_mask, local_mask),
causal_mask,
)
logits = jnp.where(attn_mask, logits, -2.3819763e38)
logits_test = rearrange(
logits, "B Qlen n_kv n_q_per_kv Klen -> B Qlen (n_kv n_q_per_kv) Klen"
)
jax.debug.print("masked logits alignment={b}", b=compare_tensors(
logits_test, intermediates['masked_logits'][i]))
probs = (jax.nn.softmax(logits, axis=-1).astype(x.dtype))
probs_test = rearrange(
probs, "B Qlen n_kv n_q_per_kv Klen -> B Qlen (n_kv n_q_per_kv) Klen"
)
jax.debug.print("att wei alignment={b}", b=compare_tensors(
probs_test, intermediates['att_wei'][i]))
encoded = einsum(
probs, v, "B Qlen n_kv n_q_per_kv Klen, B Klen n_kv d_head -> B Qlen n_kv n_q_per_kv d_head"
)
encoded = rearrange(
encoded, "B Qlen n_kv n_q_per_kv d_head -> B Qlen (n_kv n_q_per_kv) d_head"
)
# jax.debug.print("attn_out before MHA mix aligned: {b}", b=compare_tensors(
# encoded, intermediates['a_out_premix'][i]))
# realigning
encoded = intermediates['a_out_premix'][i]
# for some reason: mixing mha is wrong here...
# attn_out = einsum(
# encoded, w_o, "B Qlen n_head d_head, n_head d_head d_model -> B Qlen d_model"
# )
# but correct here:
attn_out = jnp.einsum('BTNH,NHD->BTD', encoded, w_o)
jax.debug.print("attn_out after w_o alignment: {b}", b=compare_tensors(
attn_out, intermediates['a_out'][i]))
# realigning
# attn_out = intermediates['a_out'][i]
attn_out = rms_norm(attn_out) * (1.0 + post_attn_ln)
jax.debug.print("post attn norm alignment = {b}", b=compare_tensors(
attn_out, intermediates['post_attention_norm'][i]))
# realigning
attn_out = intermediates['post_attention_norm'][i]
x += attn_out
nx = rms_norm(x) * (1.0 + ln2)
jax.debug.print("pre ffw norm alignment = {b}", b=compare_tensors(
nx, intermediates['pre_ffw_norm'][i]))
# realigning
# nx = intermediates['pre_ffw_norm'][i]
gate_proj = einsum(nx, w_gate, "B L M, M F -> B L F")
up_proj = einsum(nx, w_up, "B L M, M F -> B L F")
y = jax.nn.gelu(gate_proj) * up_proj
ffn_out = einsum(y, w_down, "B L F, M F -> B L M")
jax.debug.print("ffn_out alignment = {b}", b=compare_tensors(
ffn_out, intermediates['mlp'][i]))
# realigning
# ffn_out = intermediates['mlp'][i]
ffn_out = rms_norm(ffn_out) * (1.0 + post_ffn_ln)
jax.debug.print("post_ffw_norm alignment = {b}", b=(compare_tensors(
ffn_out, intermediates['post_ffw_norm'][i])))
# realigning
ffn_out = intermediates['post_ffw_norm'][i]
x += ffn_out
print('final carry dtype \n', x.dtype)
return (jnp.bfloat16(x), ~use_local_window_attn, i+1), ()
for i in range(h.layers):
layer_weights = [
m_w_q[i],
m_w_kv[i],
m_w_o[i],
m_w_gate[i],
m_w_up[i],
m_w_down[i],
m_ln1[i],
m_ln2[i],
m_post_attn_ln[i],
m_post_ffn_ln[i]
]
(x, use_local_window_attn, i), _ = loop_body(
(x, use_local_window_attn, i), layer_weights)
x = rms_norm(x) * (1.0 + m_final_layer_norm)
print(compare_tensors(
x, intermediates['final_norm']))
logits = einsum(
x, embed, "B L M, V M ->B L V"
)
print(compare_tensors(
logits, intermediates['tracked_unembed']))
logits = jnp.tanh(logits / h.final_softcap) * h.final_softcap
print(compare_tensors(
logits, intermediates['final_softcap']))
# %%
i = 0
ids = dummy_input
x = embed[ids]
x *= jnp.sqrt(h.d_model)
(x, _, _), () = jax.lax.scan(
loop_body,
(x, False, i),
(
m_w_q,
m_w_kv,
m_w_o,
m_w_gate,
m_w_up,
m_w_down,
m_ln1,
m_ln2,
m_post_attn_ln,
m_post_ffn_ln
),
)
x = rms_norm(x) * (1.0 + m_final_layer_norm)
print(compare_tensors(
x, intermediates['final_norm']))
logits = einsum(
x, embed, "B L M, V M ->B L V"
)
print(compare_tensors(
logits, intermediates['tracked_unembed']))
logits = jnp.tanh(logits / h.final_softcap) * h.final_softcap
print(compare_tensors(
logits, intermediates['final_softcap']))
# %%