forked from comfyanonymous/ComfyUI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes_differential_diffusion.py
42 lines (33 loc) · 1.31 KB
/
nodes_differential_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# code adapted from https://github.com/exx8/differential-diffusion
import torch
class DifferentialDiffusion():
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False
def apply(self, model):
model = model.clone()
model.set_model_denoise_mask_function(self.forward)
return (model,)
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
if step_sigmas[-1] > sigma_to:
sigma_to = step_sigmas[-1]
sigma_from = step_sigmas[0]
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
threshold = (current_ts - ts_to) / (ts_from - ts_to)
return (denoise_mask >= threshold).to(denoise_mask.dtype)
NODE_CLASS_MAPPINGS = {
"DifferentialDiffusion": DifferentialDiffusion,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DifferentialDiffusion": "Differential Diffusion",
}