forked from AprilRobotics/apriltag
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpjpeg.c
893 lines (692 loc) · 32.4 KB
/
pjpeg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
/* Copyright (C) 2013-2016, The Regents of The University of Michigan.
All rights reserved.
This software was developed in the APRIL Robotics Lab under the
direction of Edwin Olson, [email protected]. This software may be
available under alternative licensing terms; contact the address above.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the Regents of The University of Michigan.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "pjpeg.h"
#include "image_u8.h"
#include "image_u8x3.h"
#include "debug_print.h"
// https://www.w3.org/Graphics/JPEG/itu-t81.pdf
void pjpeg_idct_2D_double(int32_t in[64], uint8_t *out, uint32_t outstride);
void pjpeg_idct_2D_u32(int32_t in[64], uint8_t *out, uint32_t outstride);
void pjpeg_idct_2D_nanojpeg(int32_t in[64], uint8_t *out, uint32_t outstride);
struct pjpeg_huffman_code
{
uint8_t nbits; // how many bits should we actually consume?
uint8_t code; // what is the symbol that was encoded? (not actually a DCT coefficient; see encoding)
};
struct pjpeg_decode_state
{
int error;
uint32_t width, height;
uint8_t *in;
uint32_t inlen;
uint32_t flags;
// to decode, we load the next 16 bits of input (generally more
// than we need). We then look up in our code book how many bits
// we have actually consumed. For example, if there was a code
// whose bit sequence was "0", the first 32768 entries would all
// be copies of {.bits=1, .value=XX}; no matter what the following
// 15 bits are, we would get the correct decode.
//
// Can be up to 8 tables; computed as (ACDC * 2 + htidx)
struct pjpeg_huffman_code huff_codes[4][65536];
int huff_codes_present[4];
uint8_t qtab[4][64];
int ncomponents;
pjpeg_component_t *components;
int reset_interval;
int reset_count;
int reset_next; // What reset marker do we expect next? (add 0xd0)
int debug;
};
// from K.3.3.1 (page 158)
static uint8_t mjpeg_dht[] = { // header
0xFF,0xC4,0x01,0xA2,
/////////////////////////////////////////////////////////////
// luminance dc coefficients.
// DC table 0
0x00,
// code lengths
0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
// values
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,
/////////////////////////////////////////////////////////////
// chrominance DC coefficents
// DC table 1
0x01,
// code lengths
0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
// values
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,
/////////////////////////////////////////////////////////////
// luminance AC coefficients
// AC table 0
0x10,
// code lengths
0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00,0x01,0x7D,
// codes
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,
0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42,0xB1,0xC1,0x15,0x52,0xD1,0xF0,0x24,
0x33,0x62,0x72,0x82,0x09,0x0A,0x16,0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,0x29,0x2A,0x34,
0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,0x56,
0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,0x74,0x75,0x76,0x77,0x78,
0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,
0x9A,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,
0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,
0xDA,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,
0xF8,0xF9,0xFA,
/////////////////////////////////////////////////////////////
// chrominance DC coefficients
// DC table 1
0x11,
// code lengths
0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01,0x02,0x77,
// values
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,
0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1,0xC1,0x09,0x23,0x33,0x52,0xF0,0x15,0x62,
0x72,0xD1,0x0A,0x16,0x24,0x34,0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,0x27,0x28,0x29,0x2A,
0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,0x56,
0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,0x74,0x75,0x76,0x77,0x78,
0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,
0x99,0x9A,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,
0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,
0xD9,0xDA,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,
0xF9,0xFA
};
static inline uint8_t max_u8(uint8_t a, uint8_t b)
{
return a > b ? a : b;
}
// order of coefficients in each DC block
static const char ZZ[64] = { 0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63 };
struct bit_decoder
{
uint8_t *in;
uint32_t inpos;
uint32_t inlen;
uint32_t bits; // the low order bits contain the next nbits_avail bits.
int nbits_avail; // how many bits in 'bits' (left aligned) are valid?
int error;
};
// ensure that at least 'nbits' of data is available in the bit decoder.
static inline void bd_ensure(struct bit_decoder *bd, int nbits)
{
while (bd->nbits_avail < nbits) {
if (bd->inpos >= bd->inlen) {
printf("hallucinating 1s!\n");
// we hit end of stream hallucinate an infinite stream of 1s
bd->bits = (bd->bits << 8) | 0xff;
bd->nbits_avail += 8;
continue;
}
uint8_t nextbyte = bd->in[bd->inpos];
bd->inpos++;
if (nextbyte == 0xff && bd->inpos < bd->inlen && bd->in[bd->inpos] == 0x00) {
// a stuffed byte
nextbyte = 0xff;
bd->inpos++;
}
// it's an ordinary byte
bd->bits = (bd->bits << 8) | nextbyte;
bd->nbits_avail += 8;
}
}
static inline uint32_t bd_peek_bits(struct bit_decoder *bd, int nbits)
{
bd_ensure(bd, nbits);
return (bd->bits >> (bd->nbits_avail - nbits)) & ((1 << nbits) - 1);
}
static inline uint32_t bd_consume_bits(struct bit_decoder *bd, int nbits)
{
assert(nbits < 32);
bd_ensure(bd, nbits);
uint32_t v = (bd->bits >> (bd->nbits_avail - nbits)) & ((1 << nbits) - 1);
bd->nbits_avail -= nbits;
return v;
}
// discard without regard for byte stuffing!
static inline void bd_discard_bytes(struct bit_decoder *bd, int nbytes)
{
assert(bd->nbits_avail == 0);
bd->inpos += nbytes;
}
static inline int bd_has_more(struct bit_decoder *bd)
{
return bd->nbits_avail > 0 || bd->inpos < bd->inlen;
}
// throw away up to 7 bits of data so that the next data returned
// began on a byte boundary.
static inline void bd_discard_to_byte_boundary(struct bit_decoder *bd)
{
bd->nbits_avail -= (bd->nbits_avail & 7);
}
static inline uint32_t bd_get_offset(struct bit_decoder *bd)
{
return bd->inpos - bd->nbits_avail / 8;
}
static int pjpeg_decode_buffer(struct pjpeg_decode_state *pjd)
{
// XXX TODO Include sanity check that this is actually a JPG
struct bit_decoder bd;
memset(&bd, 0, sizeof(struct bit_decoder));
bd.in = pjd->in;
bd.inpos = 0;
bd.inlen = pjd->inlen;
int marker_sync_skipped = 0;
int marker_sync_skipped_from_offset = 0;
while (bd_has_more(&bd)) {
uint32_t marker_offset = bd_get_offset(&bd);
// Look for the 0xff that signifies the beginning of a marker
bd_discard_to_byte_boundary(&bd);
while (bd_consume_bits(&bd, 8) != 0xff) {
if (marker_sync_skipped == 0)
marker_sync_skipped_from_offset = marker_offset;
marker_sync_skipped++;
continue;
}
if (marker_sync_skipped) {
printf("%08x: skipped %04x bytes\n", marker_sync_skipped_from_offset, marker_sync_skipped);
marker_sync_skipped = 0;
}
uint8_t marker = bd_consume_bits(&bd, 8);
// printf("marker %08x : %02x\n", marker_offset, marker);
switch (marker) {
case 0xd8: // start of image. Great, continue.
continue;
// below are the markers that A) we don't care about
// that B) encode length as two bytes.
//
// Note: Other unknown fields should not be added since
// we should be able to skip over them by looking for
// the next marker byte.
case 0xe0: // JFIF header.
case 0xe1: // EXIF header (Yuck: Payload may contain 0xff 0xff!)
case 0xe2: // ICC Profile. (Yuck: payload may contain 0xff 0xff!)
case 0xe6: // some other common header
case 0xfe: // Comment
{
uint16_t length = bd_consume_bits(&bd, 16);
bd_discard_bytes(&bd, length - 2);
continue;
}
case 0xdb: { // DQT Define Quantization Table
uint16_t length = bd_consume_bits(&bd, 16);
if (((length-2) % 65) != 0)
return PJPEG_ERR_DQT;
// can contain multiple DQTs
for (int offset = 0; offset < length - 2; offset += 65) {
// pq: quant table element precision. 0=8bit, 1=16bit.
// tq: quant table destination id.
uint8_t pqtq = bd_consume_bits(&bd, 8);
if ((pqtq & 0xf0) != 0 || (pqtq & 0x0f) >= 4)
return PJPEG_ERR_DQT;
uint8_t id = pqtq & 3;
for (int i = 0; i < 64; i++)
pjd->qtab[id][i] = bd_consume_bits(&bd, 8);
}
break;
}
case 0xc0: { // SOF, non-differential, huffman, baseline
uint16_t length = bd_consume_bits(&bd, 16);
(void) length;
uint8_t p = bd_consume_bits(&bd, 8); // precision
if (p != 8)
return PJPEG_ERR_SOF;
pjd->height = bd_consume_bits(&bd, 16);
pjd->width = bd_consume_bits(&bd, 16);
// printf("%d x %d\n", pjd->height, pjd->width);
int nf = bd_consume_bits(&bd, 8); // # image components
if (nf < 1 || nf > 3)
return PJPEG_ERR_SOF;
pjd->ncomponents = nf;
pjd->components = calloc(nf, sizeof(struct pjpeg_component));
for (int i = 0; i < nf; i++) {
// comp. identifier
pjd->components[i].id = bd_consume_bits(&bd, 8);
// horiz/vert sampling
pjd->components[i].hv = bd_consume_bits(&bd, 8);
pjd->components[i].scaley = pjd->components[i].hv & 0x0f;
pjd->components[i].scalex = pjd->components[i].hv >> 4;
// which quant table?
pjd->components[i].tq = bd_consume_bits(&bd, 8);
}
break;
}
case 0xc1: // SOF, non-differential, huffman, extended DCT
case 0xc2: // SOF, non-differential, huffman, progressive DCT
case 0xc3: // SOF, non-differential, huffman, lossless
case 0xc5: // SOF, differential, huffman, baseline DCT
case 0xc6: // SOF, differential, huffman, progressive
case 0xc7: // SOF, differential, huffman, lossless
case 0xc8: // reserved
case 0xc9: // SOF, non-differential, arithmetic, extended
case 0xca: // SOF, non-differential, arithmetic, progressive
case 0xcb: // SOF, non-differential, arithmetic, lossless
case 0xcd: // SOF, differential, arithmetic, sequential
case 0xce: // SOF, differential, arithmetic, progressive
case 0xcf: // SOF, differential, arithmetic, lossless
{
printf("pjepg.c: unsupported JPEG type %02x\n", marker);
return PJEPG_ERR_UNSUPPORTED;
}
case 0xc4: { // DHT Define Huffman Tables
// [ED: the encoding of these tables is really quite
// clever!]
uint16_t length = bd_consume_bits(&bd, 16);
length = length - 2;
while (length > 0) {
uint8_t TcTh = bd_consume_bits(&bd, 8);
length--;
uint8_t Tc = (TcTh >> 4);
int Th = TcTh & 0x0f; // which index are we using?
if (Tc >= 2 || Th >= 2)
// Tc must be either AC=1 or DC=0.
// Th must be less than 2
return PJPEG_ERR_DHT;
int htidx = Tc*2 + Th;
uint8_t L[17]; // how many symbols of each bit length?
L[0] = 0; // no 0 bit codes :)
for (int nbits = 1; nbits <= 16; nbits++) {
L[nbits] = bd_consume_bits(&bd, 8);
length -= L[nbits];
}
length -= 16;
uint32_t code_pos = 0;
for (int nbits = 1; nbits <= 16; nbits++) {
int nvalues = L[nbits];
// how many entries will we fill?
// (a 1 bit code will fill 32768, a 2 bit code 16384, ...)
uint32_t ncodes = (1 << (16 - nbits));
// consume the values...
for (int vi = 0; vi < nvalues; vi++) {
uint8_t code = bd_consume_bits(&bd, 8);
if (code_pos + ncodes > 0xffff)
return PJPEG_ERR_DHT;
for (int ci = 0; ci < ncodes; ci++) {
pjd->huff_codes[htidx][code_pos].nbits = nbits;
pjd->huff_codes[htidx][code_pos].code = code;
code_pos++;
}
}
}
pjd->huff_codes_present[htidx] = 1;
}
break;
}
// a sequentially-encoded JPG has one SOS segment. A
// progressive JPG will have multiple SOS segments.
case 0xda: { // Start Of Scan (SOS)
// Note that this marker frame (and its encoded
// length) does NOT include the bitstream that
// follows.
uint16_t length = bd_consume_bits(&bd, 16);
(void) length;
// number of components in this scan
uint8_t ns = bd_consume_bits(&bd, 8);
// for each component, what is the index into our pjd->components[] array?
uint8_t *comp_idx = calloc(ns, sizeof(uint8_t));
for (int i = 0; i < ns; i++) {
// component name
uint8_t cs = bd_consume_bits(&bd, 8);
int found = 0;
for (int j = 0; j < pjd->ncomponents; j++) {
if (cs == pjd->components[j].id) {
// which huff tables will we use for
// DC (high 4 bits) and AC (low 4 bits)
pjd->components[j].tda = bd_consume_bits(&bd, 8);
comp_idx[i] = j;
found = 1;
break;
}
}
if (!found)
return PJPEG_ERR_SOS;
}
// start of spectral selection. baseline == 0
uint8_t ss = bd_consume_bits(&bd, 8);
// end of spectral selection. baseline == 0x3f
uint8_t se = bd_consume_bits(&bd, 8);
// successive approximation bits. baseline == 0
uint8_t Ahl = bd_consume_bits(&bd, 8);
if (ss != 0 || se != 0x3f || Ahl != 0x00)
return PJPEG_ERR_SOS;
// compute the dimensions of each MCU in pixels
int maxmcux = 0, maxmcuy = 0;
for (int i = 0; i < ns; i++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[i]];
maxmcux = max_u8(maxmcux, comp->scalex * 8);
maxmcuy = max_u8(maxmcuy, comp->scaley * 8);
}
// how many MCU blocks are required to encode the whole image?
int mcus_x = (pjd->width + maxmcux - 1) / maxmcux;
int mcus_y = (pjd->height + maxmcuy - 1) / maxmcuy;
if (0)
printf("Image has %d x %d MCU blocks, each %d x %d pixels\n",
mcus_x, mcus_y, maxmcux, maxmcuy);
// allocate output storage
for (int i = 0; i < ns; i++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[i]];
comp->width = mcus_x * comp->scalex * 8;
comp->height = mcus_y * comp->scaley * 8;
comp->stride = comp->width;
int alignment = 32;
if ((comp->stride % alignment) != 0)
comp->stride += alignment - (comp->stride % alignment);
comp->data = calloc(comp->height * comp->stride, 1);
}
// each component has its own DC prediction
int32_t *dcpred = calloc(ns, sizeof(int32_t));
pjd->reset_count = 0;
for (int mcu_y = 0; mcu_y < mcus_y; mcu_y++) {
for (int mcu_x = 0; mcu_x < mcus_x; mcu_x++) {
// the next two bytes in the input stream
// should be 0xff 0xdN, where N is the next
// reset counter.
//
// Our bit decoder may have already shifted
// these into the buffer. Consequently, we
// want to use our bit decoding functions to
// check for the marker. But we must first
// discard any fractional bits left.
if (pjd->reset_interval > 0 && pjd->reset_count == pjd->reset_interval) {
// RST markers are byte-aligned, so force
// the bit-decoder to the next byte
// boundary.
bd_discard_to_byte_boundary(&bd);
while (1) {
int32_t value = bd_consume_bits(&bd, 8);
if (bd.inpos > bd.inlen)
return PJPEG_ERR_EOF;
if (value == 0xff)
break;
printf("RST SYNC\n");
}
int32_t marker_32 = bd_consume_bits(&bd, 8);
// printf("%04x: RESET? %02x\n", *bd.inpos, marker_32);
if (marker_32 != (0xd0 + pjd->reset_next))
return PJPEG_ERR_RESET;
pjd->reset_count = 0;
pjd->reset_next = (pjd->reset_next + 1) & 0x7;
memset(dcpred, 0, sizeof(*dcpred));
}
for (int nsidx = 0; nsidx < ns; nsidx++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[nsidx]];
int32_t block[64];
int qtabidx = comp->tq; // which quant table?
for (int sby = 0; sby < comp->scaley; sby++) {
for (int sbx = 0; sbx < comp->scalex; sbx++) {
// decode block for component nsidx
memset(block, 0, sizeof(block));
int dc_huff_table_idx = comp->tda >> 4;
int ac_huff_table_idx = 2 + (comp->tda & 0x0f);
if (!pjd->huff_codes_present[dc_huff_table_idx] ||
!pjd->huff_codes_present[ac_huff_table_idx])
return PJPEG_ERR_MISSING_DHT; // probably an MJPEG.
if (1) {
// do DC coefficient
uint32_t next16 = bd_peek_bits(&bd, 16);
struct pjpeg_huffman_code *huff_code = &pjd->huff_codes[dc_huff_table_idx][next16];
bd_consume_bits(&bd, huff_code->nbits);
int ssss = huff_code->code & 0x0f; // ssss == number of additional bits to read
int32_t value = bd_consume_bits(&bd, ssss);
// if high bit is clear, it's negative
if ((value & (1 << (ssss-1))) == 0)
value += ((-1) << ssss) + 1;
dcpred[nsidx] += value;
block[0] = dcpred[nsidx] * pjd->qtab[qtabidx][0];
}
if (1) {
// do AC coefficients
for (int coeff = 1; coeff < 64; coeff++) {
uint32_t next16 = bd_peek_bits(&bd, 16);
struct pjpeg_huffman_code *huff_code = &pjd->huff_codes[ac_huff_table_idx][next16];
bd_consume_bits(&bd, huff_code->nbits);
if (huff_code->code == 0) {
break; // EOB
}
int rrrr = huff_code->code >> 4; // run length of zeros
int ssss = huff_code->code & 0x0f;
int32_t value = bd_consume_bits(&bd, ssss);
// if high bit is clear, it's negative
if ((value & (1 << (ssss-1))) == 0)
value += ((-1) << ssss) + 1;
coeff += rrrr;
block[(int) ZZ[coeff]] = value * pjd->qtab[qtabidx][coeff];
}
}
// do IDCT
// output block's upper-left
// coordinate (in pixels) is
// (comp_x, comp_y).
uint32_t comp_x = (mcu_x * comp->scalex + sbx) * 8;
uint32_t comp_y = (mcu_y * comp->scaley + sby) * 8;
uint32_t dataidx = comp_y * comp->stride + comp_x;
// pjpeg_idct_2D_u32(block, &comp->data[dataidx], comp->stride);
pjpeg_idct_2D_nanojpeg(block, &comp->data[dataidx], comp->stride);
}
}
}
pjd->reset_count++;
// printf("%04x: reset count %d / %d\n", pjd->inpos, pjd->reset_count, pjd->reset_interval);
}
}
free(dcpred);
free(comp_idx);
break;
}
case 0xd9: { // EOI End of Image
goto got_end_of_image;
}
case 0xdd: { // Define Restart Interval
uint16_t length = bd_consume_bits(&bd, 16);
if (length != 4)
return PJPEG_ERR_DRI;
// reset interval measured in the number of MCUs
pjd->reset_interval = bd_consume_bits(&bd, 16);
break;
}
default: {
printf("pjepg: Unknown marker %02x at offset %04x\n", marker, marker_offset);
// try to skip it.
uint16_t length = bd_consume_bits(&bd, 16);
bd_discard_bytes(&bd, length - 2);
continue;
}
} // switch (marker)
} // while inpos < inlen
got_end_of_image:
return PJPEG_OKAY;
}
void pjpeg_destroy(pjpeg_t *pj)
{
if (!pj)
return;
for (int i = 0; i < pj->ncomponents; i++)
free(pj->components[i].data);
free(pj->components);
free(pj);
}
// just grab the first component.
image_u8_t *pjpeg_to_u8_baseline(pjpeg_t *pj)
{
assert(pj->ncomponents > 0);
pjpeg_component_t *comp = &pj->components[0];
assert(comp->width >= pj->width && comp->height >= pj->height);
image_u8_t *im = image_u8_create(pj->width, pj->height);
for (int y = 0; y < im->height; y++)
memcpy(&im->buf[y*im->stride], &comp->data[y*comp->stride], pj->width);
return im;
}
static inline uint8_t clampd(double v)
{
if (v < 0)
return 0;
if (v > 255)
return 255;
return (uint8_t) v;
}
static inline uint8_t clamp_u8(int32_t v)
{
if (v < 0)
return 0;
if (v > 255)
return 255;
return v;
}
// color conversion formulas taken from JFIF spec v 1.02
image_u8x3_t *pjpeg_to_u8x3_baseline(pjpeg_t *pj)
{
assert(pj->ncomponents == 3);
pjpeg_component_t *Y = &pj->components[0];
pjpeg_component_t *Cb = &pj->components[1];
pjpeg_component_t *Cr = &pj->components[2];
int Cb_factor_y = Y->height / Cb->height;
int Cb_factor_x = Y->width / Cb->width;
int Cr_factor_y = Y->height / Cr->height;
int Cr_factor_x = Y->width / Cr->width;
image_u8x3_t *im = image_u8x3_create(pj->width, pj->height);
if (Cr_factor_y == 1 && Cr_factor_x == 1 && Cb_factor_y == 1 && Cb_factor_x == 1) {
for (int y = 0; y < pj->height; y++) {
for (int x = 0; x < pj->width; x++) {
int32_t y_val = Y->data[y*Y->stride + x] * 65536;
int32_t cb_val = Cb->data[y*Cb->stride + x] - 128;
int32_t cr_val = Cr->data[y*Cr->stride + x] - 128;
int32_t r_val = y_val + 91881 * cr_val;
int32_t g_val = y_val + -22554 * cb_val - 46802 * cr_val;
int32_t b_val = y_val + 116130 * cb_val;
im->buf[y*im->stride + 3*x + 0 ] = clamp_u8(r_val >> 16);
im->buf[y*im->stride + 3*x + 1 ] = clamp_u8(g_val >> 16);
im->buf[y*im->stride + 3*x + 2 ] = clamp_u8(b_val >> 16);
}
}
} else if (Cb_factor_y == Cr_factor_y && Cb_factor_x == Cr_factor_x) {
for (int by = 0; by < pj->height / Cb_factor_y; by++) {
for (int bx = 0; bx < pj->width / Cb_factor_x; bx++) {
int32_t cb_val = Cb->data[by*Cb->stride + bx] - 128;
int32_t cr_val = Cr->data[by*Cr->stride + bx] - 128;
int32_t r0 = 91881 * cr_val;
int32_t g0 = -22554 * cb_val - 46802 * cr_val;
int32_t b0 = 116130 * cb_val;
for (int dy = 0; dy < Cb_factor_y; dy++) {
int y = by*Cb_factor_y + dy;
for (int dx = 0; dx < Cb_factor_x; dx++) {
int x = bx*Cb_factor_x + dx;
int32_t y_val = Y->data[y*Y->stride + x] * 65536;
int32_t r_val = r0 + y_val;
int32_t g_val = g0 + y_val;
int32_t b_val = b0 + y_val;
im->buf[y*im->stride + 3*x + 0 ] = clamp_u8(r_val >> 16);
im->buf[y*im->stride + 3*x + 1 ] = clamp_u8(g_val >> 16);
im->buf[y*im->stride + 3*x + 2 ] = clamp_u8(b_val >> 16);
}
}
}
}
} else {
for (int y = 0; y < pj->height; y++) {
for (int x = 0; x < pj->width; x++) {
int32_t y_val = Y->data[y*Y->stride + x];
int32_t cb_val = Cb->data[(y / Cb_factor_y)*Cb->stride + (x / Cb_factor_x)] - 128;
int32_t cr_val = Cr->data[(y / Cr_factor_y)*Cr->stride + (x / Cr_factor_x)] - 128;
uint8_t r_val = clampd(y_val + 1.402 * cr_val);
uint8_t g_val = clampd(y_val - 0.34414 * cb_val - 0.71414 * cr_val);
uint8_t b_val = clampd(y_val + 1.772 * cb_val);
im->buf[y*im->stride + 3*x + 0 ] = r_val;
im->buf[y*im->stride + 3*x + 1 ] = g_val;
im->buf[y*im->stride + 3*x + 2 ] = b_val;
}
}
}
return im;
}
///////////////////////////////////////////////////////////////////
// returns NULL if file loading fails.
pjpeg_t *pjpeg_create_from_file(const char *path, uint32_t flags, int *error)
{
FILE *f = fopen(path, "rb");
if (f == NULL)
return NULL;
fseek(f, 0, SEEK_END);
long buflen = ftell(f);
uint8_t *buf = malloc(buflen);
fseek(f, 0, SEEK_SET);
int res = fread(buf, 1, buflen, f);
if ( ferror(f) ){
debug_print ("Read failed");
clearerr(f);
}
fclose(f);
if (res != buflen) {
free(buf);
if (error)
*error = PJPEG_ERR_FILE;
return NULL;
}
pjpeg_t *pj = pjpeg_create_from_buffer(buf, buflen, flags, error);
free(buf);
return pj;
}
pjpeg_t *pjpeg_create_from_buffer(uint8_t *buf, int buflen, uint32_t flags, int *error)
{
struct pjpeg_decode_state pjd;
memset(&pjd, 0, sizeof(pjd));
if (flags & PJPEG_MJPEG) {
pjd.in = mjpeg_dht;
pjd.inlen = sizeof(mjpeg_dht);
int result = pjpeg_decode_buffer(&pjd);
assert(result == 0);
}
pjd.in = buf;
pjd.inlen = buflen;
pjd.flags = flags;
int result = pjpeg_decode_buffer(&pjd);
if (error)
*error = result;
if (result) {
for (int i = 0; i < pjd.ncomponents; i++)
free(pjd.components[i].data);
free(pjd.components);
return NULL;
}
pjpeg_t *pj = calloc(1, sizeof(pjpeg_t));
pj->width = pjd.width;
pj->height = pjd.height;
pj->ncomponents = pjd.ncomponents;
pj->components = pjd.components;
return pj;
}