forked from ogrisel/coveragepy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
collector.py
433 lines (360 loc) · 16.8 KB
/
collector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
# For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt
"""Raw data collector for coverage.py."""
import os
import sys
from coverage import env
from coverage.backward import litems, range # pylint: disable=redefined-builtin
from coverage.debug import short_stack
from coverage.disposition import FileDisposition
from coverage.misc import CoverageException, isolate_module
from coverage.pytracer import PyTracer
os = isolate_module(os)
try:
# Use the C extension code when we can, for speed.
from coverage.tracer import CTracer, CFileDisposition
except ImportError:
# Couldn't import the C extension, maybe it isn't built.
if os.getenv('COVERAGE_TEST_TRACER') == 'c':
# During testing, we use the COVERAGE_TEST_TRACER environment variable
# to indicate that we've fiddled with the environment to test this
# fallback code. If we thought we had a C tracer, but couldn't import
# it, then exit quickly and clearly instead of dribbling confusing
# errors. I'm using sys.exit here instead of an exception because an
# exception here causes all sorts of other noise in unittest.
sys.stderr.write("*** COVERAGE_TEST_TRACER is 'c' but can't import CTracer!\n")
sys.exit(1)
CTracer = None
class Collector(object):
"""Collects trace data.
Creates a Tracer object for each thread, since they track stack
information. Each Tracer points to the same shared data, contributing
traced data points.
When the Collector is started, it creates a Tracer for the current thread,
and installs a function to create Tracers for each new thread started.
When the Collector is stopped, all active Tracers are stopped.
Threads started while the Collector is stopped will never have Tracers
associated with them.
"""
# The stack of active Collectors. Collectors are added here when started,
# and popped when stopped. Collectors on the stack are paused when not
# the top, and resumed when they become the top again.
_collectors = []
# The concurrency settings we support here.
SUPPORTED_CONCURRENCIES = set(["greenlet", "eventlet", "gevent", "thread"])
def __init__(
self, should_trace, check_include, should_start_context, file_mapper,
timid, branch, warn, concurrency,
):
"""Create a collector.
`should_trace` is a function, taking a file name and a frame, and
returning a `coverage.FileDisposition object`.
`check_include` is a function taking a file name and a frame. It returns
a boolean: True if the file should be traced, False if not.
`should_start_context` is a function taking a frame, and returning a
string. If the frame should be the start of a new context, the string
is the new context. If the frame should not be the start of a new
context, return None.
`file_mapper` is a function taking a filename, and returning a Unicode
filename. The result is the name that will be recorded in the data
file.
If `timid` is true, then a slower simpler trace function will be
used. This is important for some environments where manipulation of
tracing functions make the faster more sophisticated trace function not
operate properly.
If `branch` is true, then branches will be measured. This involves
collecting data on which statements followed each other (arcs). Use
`get_arc_data` to get the arc data.
`warn` is a warning function, taking a single string message argument
and an optional slug argument which will be a string or None, to be
used if a warning needs to be issued.
`concurrency` is a list of strings indicating the concurrency libraries
in use. Valid values are "greenlet", "eventlet", "gevent", or "thread"
(the default). Of these four values, only one can be supplied. Other
values are ignored.
"""
self.should_trace = should_trace
self.check_include = check_include
self.should_start_context = should_start_context
self.file_mapper = file_mapper
self.warn = warn
self.branch = branch
self.threading = None
self.covdata = None
self.static_context = None
self.origin = short_stack()
self.concur_id_func = None
self.mapped_file_cache = {}
# We can handle a few concurrency options here, but only one at a time.
these_concurrencies = self.SUPPORTED_CONCURRENCIES.intersection(concurrency)
if len(these_concurrencies) > 1:
raise CoverageException("Conflicting concurrency settings: %s" % concurrency)
self.concurrency = these_concurrencies.pop() if these_concurrencies else ''
try:
if self.concurrency == "greenlet":
import greenlet
self.concur_id_func = greenlet.getcurrent
elif self.concurrency == "eventlet":
import eventlet.greenthread # pylint: disable=import-error,useless-suppression
self.concur_id_func = eventlet.greenthread.getcurrent
elif self.concurrency == "gevent":
import gevent # pylint: disable=import-error,useless-suppression
self.concur_id_func = gevent.getcurrent
elif self.concurrency == "thread" or not self.concurrency:
# It's important to import threading only if we need it. If
# it's imported early, and the program being measured uses
# gevent, then gevent's monkey-patching won't work properly.
import threading
self.threading = threading
else:
raise CoverageException("Don't understand concurrency=%s" % concurrency)
except ImportError:
raise CoverageException(
"Couldn't trace with concurrency=%s, the module isn't installed." % (
self.concurrency,
)
)
self.reset()
if timid:
# Being timid: use the simple Python trace function.
self._trace_class = PyTracer
else:
# Being fast: use the C Tracer if it is available, else the Python
# trace function.
self._trace_class = CTracer or PyTracer
if self._trace_class is CTracer:
self.file_disposition_class = CFileDisposition
self.supports_plugins = True
else:
self.file_disposition_class = FileDisposition
self.supports_plugins = False
def __repr__(self):
return "<Collector at 0x%x: %s>" % (id(self), self.tracer_name())
def use_data(self, covdata, context):
"""Use `covdata` for recording data."""
self.covdata = covdata
self.static_context = context
self.covdata.set_context(self.static_context)
def tracer_name(self):
"""Return the class name of the tracer we're using."""
return self._trace_class.__name__
def _clear_data(self):
"""Clear out existing data, but stay ready for more collection."""
# We used to used self.data.clear(), but that would remove filename
# keys and data values that were still in use higher up the stack
# when we are called as part of switch_context.
for d in self.data.values():
d.clear()
for tracer in self.tracers:
tracer.reset_activity()
def reset(self):
"""Clear collected data, and prepare to collect more."""
# A dictionary mapping file names to dicts with line number keys (if not
# branch coverage), or mapping file names to dicts with line number
# pairs as keys (if branch coverage).
self.data = {}
# A dictionary mapping file names to file tracer plugin names that will
# handle them.
self.file_tracers = {}
# The .should_trace_cache attribute is a cache from file names to
# coverage.FileDisposition objects, or None. When a file is first
# considered for tracing, a FileDisposition is obtained from
# Coverage.should_trace. Its .trace attribute indicates whether the
# file should be traced or not. If it should be, a plugin with dynamic
# file names can decide not to trace it based on the dynamic file name
# being excluded by the inclusion rules, in which case the
# FileDisposition will be replaced by None in the cache.
if env.PYPY:
import __pypy__ # pylint: disable=import-error
# Alex Gaynor said:
# should_trace_cache is a strictly growing key: once a key is in
# it, it never changes. Further, the keys used to access it are
# generally constant, given sufficient context. That is to say, at
# any given point _trace() is called, pypy is able to know the key.
# This is because the key is determined by the physical source code
# line, and that's invariant with the call site.
#
# This property of a dict with immutable keys, combined with
# call-site-constant keys is a match for PyPy's module dict,
# which is optimized for such workloads.
#
# This gives a 20% benefit on the workload described at
# https://bitbucket.org/pypy/pypy/issue/1871/10x-slower-than-cpython-under-coverage
self.should_trace_cache = __pypy__.newdict("module")
else:
self.should_trace_cache = {}
# Our active Tracers.
self.tracers = []
self._clear_data()
def _start_tracer(self):
"""Start a new Tracer object, and store it in self.tracers."""
tracer = self._trace_class()
tracer.data = self.data
tracer.trace_arcs = self.branch
tracer.should_trace = self.should_trace
tracer.should_trace_cache = self.should_trace_cache
tracer.warn = self.warn
if hasattr(tracer, 'concur_id_func'):
tracer.concur_id_func = self.concur_id_func
elif self.concur_id_func:
raise CoverageException(
"Can't support concurrency=%s with %s, only threads are supported" % (
self.concurrency, self.tracer_name(),
)
)
if hasattr(tracer, 'file_tracers'):
tracer.file_tracers = self.file_tracers
if hasattr(tracer, 'threading'):
tracer.threading = self.threading
if hasattr(tracer, 'check_include'):
tracer.check_include = self.check_include
if hasattr(tracer, 'should_start_context'):
tracer.should_start_context = self.should_start_context
tracer.switch_context = self.switch_context
elif self.should_start_context:
raise CoverageException(
"Can't support dynamic contexts with {}".format(self.tracer_name())
)
fn = tracer.start()
self.tracers.append(tracer)
return fn
# The trace function has to be set individually on each thread before
# execution begins. Ironically, the only support the threading module has
# for running code before the thread main is the tracing function. So we
# install this as a trace function, and the first time it's called, it does
# the real trace installation.
def _installation_trace(self, frame, event, arg):
"""Called on new threads, installs the real tracer."""
# Remove ourselves as the trace function.
sys.settrace(None)
# Install the real tracer.
fn = self._start_tracer()
# Invoke the real trace function with the current event, to be sure
# not to lose an event.
if fn:
fn = fn(frame, event, arg)
# Return the new trace function to continue tracing in this scope.
return fn
def start(self):
"""Start collecting trace information."""
if self._collectors:
self._collectors[-1].pause()
self.tracers = []
# Check to see whether we had a fullcoverage tracer installed. If so,
# get the stack frames it stashed away for us.
traces0 = []
fn0 = sys.gettrace()
if fn0:
tracer0 = getattr(fn0, '__self__', None)
if tracer0:
traces0 = getattr(tracer0, 'traces', [])
try:
# Install the tracer on this thread.
fn = self._start_tracer()
except:
if self._collectors:
self._collectors[-1].resume()
raise
# If _start_tracer succeeded, then we add ourselves to the global
# stack of collectors.
self._collectors.append(self)
# Replay all the events from fullcoverage into the new trace function.
for args in traces0:
(frame, event, arg), lineno = args
try:
fn(frame, event, arg, lineno=lineno)
except TypeError:
raise Exception("fullcoverage must be run with the C trace function.")
# Install our installation tracer in threading, to jump-start other
# threads.
if self.threading:
self.threading.settrace(self._installation_trace)
def stop(self):
"""Stop collecting trace information."""
assert self._collectors
if self._collectors[-1] is not self:
print("self._collectors:")
for c in self._collectors:
print(" {!r}\n{}".format(c, c.origin))
assert self._collectors[-1] is self, (
"Expected current collector to be %r, but it's %r" % (self, self._collectors[-1])
)
self.pause()
# Remove this Collector from the stack, and resume the one underneath
# (if any).
self._collectors.pop()
if self._collectors:
self._collectors[-1].resume()
def pause(self):
"""Pause tracing, but be prepared to `resume`."""
for tracer in self.tracers:
tracer.stop()
stats = tracer.get_stats()
if stats:
print("\nCoverage.py tracer stats:")
for k in sorted(stats.keys()):
print("%20s: %s" % (k, stats[k]))
if self.threading:
self.threading.settrace(None)
def resume(self):
"""Resume tracing after a `pause`."""
for tracer in self.tracers:
tracer.start()
if self.threading:
self.threading.settrace(self._installation_trace)
else:
self._start_tracer()
def _activity(self):
"""Has any activity been traced?
Returns a boolean, True if any trace function was invoked.
"""
return any(tracer.activity() for tracer in self.tracers)
def switch_context(self, new_context):
"""Switch to a new dynamic context."""
self.flush_data()
if self.static_context:
context = self.static_context
if new_context:
context += "|" + new_context
else:
context = new_context
self.covdata.set_context(context)
def cached_mapped_file(self, filename):
"""A locally cached version of file names mapped through file_mapper."""
key = (type(filename), filename)
try:
return self.mapped_file_cache[key]
except KeyError:
return self.mapped_file_cache.setdefault(key, self.file_mapper(filename))
def mapped_file_dict(self, d):
"""Return a dict like d, but with keys modified by file_mapper."""
# The call to litems() ensures that the GIL protects the dictionary
# iterator against concurrent modifications by tracers running
# in other threads. We try three times in case of concurrent
# access, hoping to get a clean copy.
runtime_err = None
for _ in range(3):
try:
items = litems(d)
except RuntimeError as ex:
runtime_err = ex
else:
break
else:
raise runtime_err
return dict((self.cached_mapped_file(k), v) for k, v in items if v)
def flush_data(self):
"""Save the collected data to our associated `CoverageData`.
Data may have also been saved along the way. This forces the
last of the data to be saved.
Returns True if there was data to save, False if not.
"""
if not self._activity():
return False
if self.branch:
self.covdata.add_arcs(self.mapped_file_dict(self.data))
else:
self.covdata.add_lines(self.mapped_file_dict(self.data))
self.covdata.add_file_tracers(self.mapped_file_dict(self.file_tracers))
self._clear_data()
return True