-
Notifications
You must be signed in to change notification settings - Fork 12
/
utility.py
352 lines (290 loc) · 11.2 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os
import math
import time
import datetime
from multiprocessing import Process
from multiprocessing import Queue
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import imageio
import cv2
import pdb
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
class timer():
def __init__(self):
self.acc = 0
self.tic()
def tic(self):
self.t0 = time.time()
def toc(self, restart=False):
diff = time.time() - self.t0
if restart: self.t0 = time.time()
return diff
def hold(self):
self.acc += self.toc()
def release(self):
ret = self.acc
self.acc = 0
return ret
def reset(self):
self.acc = 0
class checkpoint():
def __init__(self, args):
self.args = args
self.ok = True
self.log = torch.Tensor()
self.ssim_log = torch.Tensor()
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
if not args.load:
if not args.save:
args.save = now
self.dir = os.path.join('..', 'experiment', args.save)
else:
self.dir = os.path.join('..', 'experiment', args.load)
if os.path.exists(self.dir):
self.log = torch.load(self.get_path('psnr_log.pt'))
print('Continue from epoch {}...'.format(len(self.log)))
else:
args.load = ''
if args.reset:
os.system('rm -rf ' + self.dir)
args.load = ''
os.makedirs(self.dir, exist_ok=True)
os.makedirs(self.get_path('model'), exist_ok=True)
for d in args.data_test:
os.makedirs(self.get_path('results-{}'.format(d)), exist_ok=True)
os.makedirs(self.get_path('run'), exist_ok=True)
open_type = 'a' if os.path.exists(self.get_path('log.txt'))else 'w'
self.log_file = open(self.get_path('log.txt'), open_type)
self.eval_file = open(self.get_path('eval.txt'), open_type)
with open(self.get_path('config.txt'), open_type) as f:
f.write(now + '\n\n')
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
f.write('\n')
self.n_processes = 8
def get_path(self, *subdir):
return os.path.join(self.dir, *subdir)
def save(self, trainer, epoch, is_best=False):
trainer.model.save(self.get_path('model'), epoch, is_best=is_best)
trainer.loss.save(self.dir)
trainer.loss.plot_loss(self.dir, epoch)
self.plot_psnr(epoch)
trainer.optimizer.save(self.dir)
torch.save(self.log, self.get_path('psnr_log.pt'))
def add_log(self, log):
self.log = torch.cat([self.log, log])
def write_log(self, log, refresh=False):
print(log)
self.log_file.write(log + '\n')
if refresh:
self.log_file.close()
self.log_file = open(self.get_path('log.txt'), 'a')
def write_eval(self, log):
self.eval_file.write(log + '\n')
def done(self):
self.log_file.close()
self.eval_file.close()
def plot_psnr(self, epoch):
axis = np.linspace(1, epoch, epoch)
for idx_data, d in enumerate(self.args.data_test):
label = 'SR on {}'.format(d)
fig = plt.figure()
plt.title(label)
for idx_scale, scale in enumerate(self.args.scale):
plt.plot(
axis,
self.log[:, idx_data, idx_scale].numpy(),
label='Scale {}'.format(scale)
)
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('PSNR')
plt.grid(True)
plt.savefig(self.get_path('test_{}.pdf'.format(d)))
plt.close(fig)
def begin_background(self):
self.queue = Queue()
def bg_target(queue):
while True:
if not queue.empty():
filename, tensor = queue.get()
if filename is None: break
imageio.imwrite(filename, tensor.numpy())
self.process = [
Process(target=bg_target, args=(self.queue,)) \
for _ in range(self.n_processes)
]
for p in self.process: p.start()
def end_background(self):
for _ in range(self.n_processes): self.queue.put((None, None))
while not self.queue.empty(): time.sleep(1)
for p in self.process: p.join()
def save_results(self, dataset, filename, save_list, scale):
if self.args.save_results:
filename = self.get_path(
'results-{}'.format(dataset.dataset.name),
'{}_x{}_'.format(filename, scale)
)
postfix = ('SR', 'LR', 'HR')
for v, p in zip(save_list, postfix):
normalized = v[0].mul(255 / self.args.rgb_range)
tensor_cpu = normalized.byte().permute(1, 2, 0).cpu()
self.queue.put(('{}{}.png'.format(filename, p), tensor_cpu))
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)
def calc_psnr(sr, hr, scale, rgb_range, dataset=None):
if hr.nelement() == 1: return 0
diff = (sr - hr) / rgb_range
if dataset and dataset.dataset.benchmark:
shave = scale
if diff.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
diff = diff.mul(convert).sum(dim=1)
else:
shave = scale + 6
valid = diff[..., shave:-shave, shave:-shave]
mse = valid.pow(2).mean()
return -10 * math.log10(mse)
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def bgr2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
def calc_ssim(img1, img2, scale):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
shave = scale
img1 = tensor2img(img1) / 255.
img2 = tensor2img(img2) / 255.
# print(img1.shape, img2.shape)
# img1 = img1[shave:-shave, shave:-shave, :]
# img2 = img2[shave:-shave, shave:-shave, :]
img1 = bgr2ycbcr(img1) * 255
img2 = bgr2ycbcr(img2) * 255
# print(img1.shape, img2.shape)
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def make_optimizer(args, target):
'''
make optimizer and scheduler together
'''
# optimizer
trainable = filter(lambda x: x.requires_grad, target.parameters())
kwargs_optimizer = {'lr': args.lr, 'weight_decay': args.weight_decay}
if args.optimizer == 'SGD':
optimizer_class = optim.SGD
kwargs_optimizer['momentum'] = args.momentum
elif args.optimizer == 'ADAM':
optimizer_class = optim.Adam
kwargs_optimizer['betas'] = args.betas
kwargs_optimizer['eps'] = args.epsilon
elif args.optimizer == 'RMSprop':
optimizer_class = optim.RMSprop
kwargs_optimizer['eps'] = args.epsilon
# scheduler
milestones = list(map(lambda x: int(x), args.decay.split('-')))
kwargs_scheduler = {'milestones': milestones, 'gamma': args.gamma}
scheduler_class = lrs.MultiStepLR
class CustomOptimizer(optimizer_class):
def __init__(self, *args, **kwargs):
super(CustomOptimizer, self).__init__(*args, **kwargs)
def _register_scheduler(self, scheduler_class, **kwargs):
self.scheduler = scheduler_class(self, **kwargs)
def save(self, save_dir):
torch.save(self.state_dict(), self.get_dir(save_dir))
def load(self, load_dir, epoch=1):
self.load_state_dict(torch.load(self.get_dir(load_dir)))
if epoch > 1:
for _ in range(epoch): self.scheduler.step()
def get_dir(self, dir_path):
return os.path.join(dir_path, 'optimizer.pt')
def schedule(self):
self.scheduler.step()
def get_lr(self):
return self.scheduler.get_lr()[0]
def get_last_epoch(self):
return self.scheduler.last_epoch
optimizer = CustomOptimizer(trainable, **kwargs_optimizer)
optimizer._register_scheduler(scheduler_class, **kwargs_scheduler)
return optimizer