forked from huggingface/accelerate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_memory_utils.py
91 lines (72 loc) · 3.38 KB
/
test_memory_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from accelerate.utils.memory import find_executable_batch_size
def raise_fake_out_of_memory():
raise RuntimeError("CUDA out of memory.")
class MemoryTest(unittest.TestCase):
def test_memory_implicit(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=128)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(batch_sizes, [128, 64, 32, 16, 8])
def test_memory_explicit(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=128)
def mock_training_loop_function(batch_size, arg1):
nonlocal batch_sizes
batch_sizes.append(batch_size)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arg1
bs, arg1 = mock_training_loop_function("hello")
self.assertListEqual(batch_sizes, [128, 64, 32, 16, 8])
self.assertListEqual([bs, arg1], [8, "hello"])
def test_start_zero(self):
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(batch_size):
pass
with self.assertRaises(RuntimeError) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero.", cm.exception.args[0])
def test_approach_zero(self):
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(batch_size):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(RuntimeError) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero.", cm.exception.args[0])
def test_verbose_guard(self):
@find_executable_batch_size(starting_batch_size=128)
def mock_training_loop_function(batch_size, arg1, arg2):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(TypeError) as cm:
mock_training_loop_function(128, "hello", "world")
self.assertIn("Batch size was passed into `f`", cm.exception.args[0])
self.assertIn("`f(arg1='hello', arg2='world')", cm.exception.args[0])
def test_any_other_error(self):
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(batch_size):
raise ValueError("Oops, we had an error!")
with self.assertRaises(ValueError) as cm:
mock_training_loop_function()
self.assertIn("Oops, we had an error!", cm.exception.args[0])