forked from paulyehtw/Lane-Keeping-Assist-on-CARLA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module_7.py
766 lines (664 loc) · 32.6 KB
/
module_7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
#!/usr/bin/env python3
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
CARLA waypoint follower assessment client script.
A controller assessment to follow a given trajectory, where the trajectory
can be defined using way-points.
STARTING in a moment...
"""
from __future__ import print_function
from __future__ import division
# System level imports
import sys
import os
import argparse
import logging
import time
import math
import numpy as np
import csv
import matplotlib.pyplot as plt
import controller2d
import configparser
# Script level imports
sys.path.append(os.path.abspath(sys.path[0] + '/..'))
import live_plotter as lv # Custom live plotting library
from carla import sensor
from carla.client import make_carla_client, VehicleControl
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.controller import utils
"""
Configurable params
"""
ITER_FOR_SIM_TIMESTEP = 10 # no. iterations to compute approx sim timestep
WAIT_TIME_BEFORE_START = 5.00 # game seconds (time before controller start)
TOTAL_RUN_TIME = 200.00 # game seconds (total runtime before sim end)
TOTAL_FRAME_BUFFER = 300 # number of frames to buffer after total runtime
NUM_PEDESTRIANS = 0 # total number of pedestrians to spawn
NUM_VEHICLES = 0 # total number of vehicles to spawn
SEED_PEDESTRIANS = 0 # seed for pedestrian spawn randomizer
SEED_VEHICLES = 0 # seed for vehicle spawn randomizer
WEATHERID = {
"DEFAULT": 0,
"CLEARNOON": 1,
"CLOUDYNOON": 2,
"WETNOON": 3,
"WETCLOUDYNOON": 4,
"MIDRAINYNOON": 5,
"HARDRAINNOON": 6,
"SOFTRAINNOON": 7,
"CLEARSUNSET": 8,
"CLOUDYSUNSET": 9,
"WETSUNSET": 10,
"WETCLOUDYSUNSET": 11,
"MIDRAINSUNSET": 12,
"HARDRAINSUNSET": 13,
"SOFTRAINSUNSET": 14,
}
SIMWEATHER = WEATHERID["CLEARNOON"] # set simulation weather
PLAYER_START_INDEX = 1 # spawn index for player (keep to 1)
FIGSIZE_X_INCHES = 8 # x figure size of feedback in inches
FIGSIZE_Y_INCHES = 8 # y figure size of feedback in inches
PLOT_LEFT = 0.1 # in fractions of figure width and height
PLOT_BOT = 0.1
PLOT_WIDTH = 0.8
PLOT_HEIGHT = 0.8
WAYPOINTS_FILENAME = 'racetrack_waypoints.txt' # waypoint file to load
DIST_THRESHOLD_TO_LAST_WAYPOINT = 1.0 # some distance from last position before
# simulation ends
# Path interpolation parameters
INTERP_MAX_POINTS_PLOT = 10 # number of points used for displaying
# lookahead path
INTERP_LOOKAHEAD_DISTANCE = 20 # lookahead in meters
INTERP_DISTANCE_RES = 0.01 # distance between interpolated points
# controller output directory
CONTROLLER_OUTPUT_FOLDER = os.path.dirname(os.path.realpath(__file__)) +\
'/controller_output/'
def make_carla_settings(args):
"""Make a CarlaSettings object with the settings we need.
"""
settings = CarlaSettings()
# There is no need for non-agent info requests if there are no pedestrians
# or vehicles.
get_non_player_agents_info = False
if (NUM_PEDESTRIANS > 0 or NUM_VEHICLES > 0):
get_non_player_agents_info = True
# Base level settings
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=get_non_player_agents_info,
NumberOfVehicles=NUM_VEHICLES,
NumberOfPedestrians=NUM_PEDESTRIANS,
SeedVehicles=SEED_VEHICLES,
SeedPedestrians=SEED_PEDESTRIANS,
WeatherId=SIMWEATHER,
QualityLevel=args.quality_level)
return settings
class Timer(object):
""" Timer Class
The steps are used to calculate FPS, while the lap or seconds since lap is
used to compute elapsed time.
"""
def __init__(self, period):
self.step = 0
self._lap_step = 0
self._lap_time = time.time()
self._period_for_lap = period
def tick(self):
self.step += 1
def has_exceeded_lap_period(self):
if self.elapsed_seconds_since_lap() >= self._period_for_lap:
return True
else:
return False
def lap(self):
self._lap_step = self.step
self._lap_time = time.time()
def ticks_per_second(self):
return float(self.step - self._lap_step) /\
self.elapsed_seconds_since_lap()
def elapsed_seconds_since_lap(self):
return time.time() - self._lap_time
def get_current_pose(measurement):
"""Obtains current x,y,yaw pose from the client measurements
Obtains the current x,y, and yaw pose from the client measurements.
Args:
measurement: The CARLA client measurements (from read_data())
Returns: (x, y, yaw)
x: X position in meters
y: Y position in meters
yaw: Yaw position in radians
"""
x = measurement.player_measurements.transform.location.x
y = measurement.player_measurements.transform.location.y
yaw = math.radians(measurement.player_measurements.transform.rotation.yaw)
return (x, y, yaw)
def get_start_pos(scene):
"""Obtains player start x,y, yaw pose from the scene
Obtains the player x,y, and yaw pose from the scene.
Args:
scene: The CARLA scene object
Returns: (x, y, yaw)
x: X position in meters
y: Y position in meters
yaw: Yaw position in radians
"""
x = scene.player_start_spots[0].location.x
y = scene.player_start_spots[0].location.y
yaw = math.radians(scene.player_start_spots[0].rotation.yaw)
return (x, y, yaw)
def send_control_command(client, throttle, steer, brake,
hand_brake=False, reverse=False):
"""Send control command to CARLA client.
Send control command to CARLA client.
Args:
client: The CARLA client object
throttle: Throttle command for the sim car [0, 1]
steer: Steer command for the sim car [-1, 1]
brake: Brake command for the sim car [0, 1]
hand_brake: Whether the hand brake is engaged
reverse: Whether the sim car is in the reverse gear
"""
control = VehicleControl()
# Clamp all values within their limits
steer = np.fmax(np.fmin(steer, 1.0), -1.0)
throttle = np.fmax(np.fmin(throttle, 1.0), 0)
brake = np.fmax(np.fmin(brake, 1.0), 0)
control.steer = steer
control.throttle = throttle
control.brake = brake
control.hand_brake = hand_brake
control.reverse = reverse
client.send_control(control)
def create_controller_output_dir(output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
def store_trajectory_plot(graph, fname):
""" Store the resulting plot.
"""
create_controller_output_dir(CONTROLLER_OUTPUT_FOLDER)
file_name = os.path.join(CONTROLLER_OUTPUT_FOLDER, fname)
graph.savefig(file_name)
def write_trajectory_file(x_list, y_list, v_list, t_list):
create_controller_output_dir(CONTROLLER_OUTPUT_FOLDER)
file_name = os.path.join(CONTROLLER_OUTPUT_FOLDER, 'trajectory.txt')
with open(file_name, 'w') as trajectory_file:
for i in range(len(x_list)):
trajectory_file.write('%3.3f, %3.3f, %2.3f, %6.3f\n' %\
(x_list[i], y_list[i], v_list[i], t_list[i]))
def exec_waypoint_nav_demo(args):
""" Executes waypoint navigation demo.
"""
with make_carla_client(args.host, args.port) as client:
print('Carla client connected.')
settings = make_carla_settings(args)
# Now we load these settings into the server. The server replies
# with a scene description containing the available start spots for
# the player. Here we can provide a CarlaSettings object or a
# CarlaSettings.ini file as string.
scene = client.load_settings(settings)
# Refer to the player start folder in the WorldOutliner to see the
# player start information
player_start = PLAYER_START_INDEX
# Notify the server that we want to start the episode at the
# player_start index. This function blocks until the server is ready
# to start the episode.
print('Starting new episode at %r...' % scene.map_name)
client.start_episode(player_start)
#############################################
# Load Configurations
#############################################
# Load configuration file (options.cfg) and then parses for the various
# options. Here we have two main options:
# live_plotting and live_plotting_period, which controls whether
# live plotting is enabled or how often the live plotter updates
# during the simulation run.
config = configparser.ConfigParser()
config.read(os.path.join(
os.path.dirname(os.path.realpath(__file__)), 'options.cfg'))
demo_opt = config['Demo Parameters']
# Get options
enable_live_plot = demo_opt.get('live_plotting', 'true').capitalize()
enable_live_plot = enable_live_plot == 'True'
live_plot_period = float(demo_opt.get('live_plotting_period', 0))
# Set options
live_plot_timer = Timer(live_plot_period)
#############################################
# Load Waypoints
#############################################
# Opens the waypoint file and stores it to "waypoints"
waypoints_file = WAYPOINTS_FILENAME
waypoints_np = None
with open(waypoints_file) as waypoints_file_handle:
waypoints = list(csv.reader(waypoints_file_handle,
delimiter=',',
quoting=csv.QUOTE_NONNUMERIC))
waypoints_np = np.array(waypoints)
# Because the waypoints are discrete and our controller performs better
# with a continuous path, here we will send a subset of the waypoints
# within some lookahead distance from the closest point to the vehicle.
# Interpolating between each waypoint will provide a finer resolution
# path and make it more "continuous". A simple linear interpolation
# is used as a preliminary method to address this issue, though it is
# better addressed with better interpolation methods (spline
# interpolation, for example).
# More appropriate interpolation methods will not be used here for the
# sake of demonstration on what effects discrete paths can have on
# the controller. It is made much more obvious with linear
# interpolation, because in a way part of the path will be continuous
# while the discontinuous parts (which happens at the waypoints) will
# show just what sort of effects these points have on the controller.
# Can you spot these during the simulation? If so, how can you further
# reduce these effects?
# Linear interpolation computations
# Compute a list of distances between waypoints
wp_distance = [] # distance array
for i in range(1, waypoints_np.shape[0]):
wp_distance.append(
np.sqrt((waypoints_np[i, 0] - waypoints_np[i-1, 0])**2 +
(waypoints_np[i, 1] - waypoints_np[i-1, 1])**2))
wp_distance.append(0) # last distance is 0 because it is the distance
# from the last waypoint to the last waypoint
# Linearly interpolate between waypoints and store in a list
wp_interp = [] # interpolated values
# (rows = waypoints, columns = [x, y, v])
wp_interp_hash = [] # hash table which indexes waypoints_np
# to the index of the waypoint in wp_interp
interp_counter = 0 # counter for current interpolated point index
for i in range(waypoints_np.shape[0] - 1):
# Add original waypoint to interpolated waypoints list (and append
# it to the hash table)
wp_interp.append(list(waypoints_np[i]))
wp_interp_hash.append(interp_counter)
interp_counter+=1
# Interpolate to the next waypoint. First compute the number of
# points to interpolate based on the desired resolution and
# incrementally add interpolated points until the next waypoint
# is about to be reached.
num_pts_to_interp = int(np.floor(wp_distance[i] /\
float(INTERP_DISTANCE_RES)) - 1)
wp_vector = waypoints_np[i+1] - waypoints_np[i]
wp_uvector = wp_vector / np.linalg.norm(wp_vector)
for j in range(num_pts_to_interp):
next_wp_vector = INTERP_DISTANCE_RES * float(j+1) * wp_uvector
wp_interp.append(list(waypoints_np[i] + next_wp_vector))
interp_counter+=1
# add last waypoint at the end
wp_interp.append(list(waypoints_np[-1]))
wp_interp_hash.append(interp_counter)
interp_counter+=1
#############################################
# Controller 2D Class Declaration
#############################################
# This is where we take the controller2d.py class
# and apply it to the simulator
controller = controller2d.Controller2D(waypoints)
#############################################
# Determine simulation average timestep (and total frames)
#############################################
# Ensure at least one frame is used to compute average timestep
num_iterations = ITER_FOR_SIM_TIMESTEP
if (ITER_FOR_SIM_TIMESTEP < 1):
num_iterations = 1
# Gather current data from the CARLA server. This is used to get the
# simulator starting game time. Note that we also need to
# send a command back to the CARLA server because synchronous mode
# is enabled.
measurement_data, sensor_data = client.read_data()
sim_start_stamp = measurement_data.game_timestamp / 1000.0
# Send a control command to proceed to next iteration.
# This mainly applies for simulations that are in synchronous mode.
send_control_command(client, throttle=0.0, steer=0, brake=1.0)
# Computes the average timestep based on several initial iterations
sim_duration = 0
for i in range(num_iterations):
# Gather current data
measurement_data, sensor_data = client.read_data()
# Send a control command to proceed to next iteration
send_control_command(client, throttle=0.0, steer=0, brake=1.0)
# Last stamp
if i == num_iterations - 1:
sim_duration = measurement_data.game_timestamp / 1000.0 -\
sim_start_stamp
# Outputs average simulation timestep and computes how many frames
# will elapse before the simulation should end based on various
# parameters that we set in the beginning.
SIMULATION_TIME_STEP = sim_duration / float(num_iterations)
print("SERVER SIMULATION STEP APPROXIMATION: " + \
str(SIMULATION_TIME_STEP))
TOTAL_EPISODE_FRAMES = int((TOTAL_RUN_TIME + WAIT_TIME_BEFORE_START) /\
SIMULATION_TIME_STEP) + TOTAL_FRAME_BUFFER
#############################################
# Frame-by-Frame Iteration and Initialization
#############################################
# Store pose history starting from the start position
measurement_data, sensor_data = client.read_data()
start_x, start_y, start_yaw = get_current_pose(measurement_data)
send_control_command(client, throttle=0.0, steer=0, brake=1.0)
x_history = [start_x]
y_history = [start_y]
yaw_history = [start_yaw]
time_history = [0]
speed_history = [0]
#############################################
# Vehicle Trajectory Live Plotting Setup
#############################################
# Uses the live plotter to generate live feedback during the simulation
# The two feedback includes the trajectory feedback and
# the controller feedback (which includes the speed tracking).
lp_traj = lv.LivePlotter(tk_title="Trajectory Trace")
lp_1d = lv.LivePlotter(tk_title="Controls Feedback")
###
# Add 2D position / trajectory plot
###
trajectory_fig = lp_traj.plot_new_dynamic_2d_figure(
title='Vehicle Trajectory',
figsize=(FIGSIZE_X_INCHES, FIGSIZE_Y_INCHES),
edgecolor="black",
rect=[PLOT_LEFT, PLOT_BOT, PLOT_WIDTH, PLOT_HEIGHT])
trajectory_fig.set_invert_x_axis() # Because UE4 uses left-handed
# coordinate system the X
# axis in the graph is flipped
trajectory_fig.set_axis_equal() # X-Y spacing should be equal in size
# Add waypoint markers
trajectory_fig.add_graph("waypoints", window_size=waypoints_np.shape[0],
x0=waypoints_np[:,0], y0=waypoints_np[:,1],
linestyle="-", marker="", color='g')
# Add trajectory markers
trajectory_fig.add_graph("trajectory", window_size=TOTAL_EPISODE_FRAMES,
x0=[start_x]*TOTAL_EPISODE_FRAMES,
y0=[start_y]*TOTAL_EPISODE_FRAMES,
color=[1, 0.5, 0])
"""
# Add lookahead path
trajectory_fig.add_graph("lookahead_path",
window_size=INTERP_MAX_POINTS_PLOT,
x0=[start_x]*INTERP_MAX_POINTS_PLOT,
y0=[start_y]*INTERP_MAX_POINTS_PLOT,
color=[0, 0.7, 0.7],
linewidth=4)
"""
# Add starting position marker
trajectory_fig.add_graph("start_pos", window_size=1,
x0=[start_x], y0=[start_y],
marker=11, color=[1, 0.5, 0],
markertext="Start", marker_text_offset=1)
# Add end position marker
trajectory_fig.add_graph("end_pos", window_size=1,
x0=[waypoints_np[-1, 0]],
y0=[waypoints_np[-1, 1]],
marker="D", color='r',
markertext="End", marker_text_offset=1)
# Add car marker
trajectory_fig.add_graph("car", window_size=1,
marker="s", color='b', markertext="Car",
marker_text_offset=1)
###
# Add 1D speed profile updater
###
forward_speed_fig =\
lp_1d.plot_new_dynamic_figure(title="Forward Speed (km/h)")
forward_speed_fig.add_graph("forward_speed",
label="forward_speed",
window_size=TOTAL_EPISODE_FRAMES)
forward_speed_fig.add_graph("reference_signal",
label="reference_Signal",
window_size=TOTAL_EPISODE_FRAMES)
# Add throttle signals graph
throttle_fig = lp_1d.plot_new_dynamic_figure(title="Throttle (%)")
throttle_fig.add_graph("throttle",
label="throttle",
window_size=TOTAL_EPISODE_FRAMES)
"""
# Add brake signals graph
brake_fig = lp_1d.plot_new_dynamic_figure(title="Brake")
brake_fig.add_graph("brake",
label="brake",
window_size=TOTAL_EPISODE_FRAMES)
"""
# Add steering signals graph
steer_fig = lp_1d.plot_new_dynamic_figure(title="Steer (Degree)")
steer_fig.add_graph("steer",
label="steer",
window_size=TOTAL_EPISODE_FRAMES)
# live plotter is disabled, hide windows
if not enable_live_plot:
lp_traj._root.withdraw()
lp_1d._root.withdraw()
# Iterate the frames until the end of the waypoints is reached or
# the TOTAL_EPISODE_FRAMES is reached. The controller simulation then
# ouptuts the results to the controller output directory.
reached_the_end = False
skip_first_frame = True
closest_index = 0 # Index of waypoint that is currently closest to
# the car (assumed to be the first index)
closest_distance = 0 # Closest distance of closest waypoint to car
for frame in range(TOTAL_EPISODE_FRAMES):
# Gather current data from the CARLA server
measurement_data, sensor_data = client.read_data()
# Update pose, timestamp
current_x, current_y, current_yaw = \
get_current_pose(measurement_data)
current_speed = measurement_data.player_measurements.forward_speed
current_timestamp = float(measurement_data.game_timestamp) / 1000.0
# Shift x, y coordinates
length = -1.5
current_x, current_y = controller.get_shifted_coordinate(current_x, current_y, current_yaw, length)
# Wait for some initial time before starting the demo
if current_timestamp <= WAIT_TIME_BEFORE_START:
send_control_command(client, throttle=0.0, steer=0, brake=1.0)
continue
else:
current_timestamp = current_timestamp - WAIT_TIME_BEFORE_START
# Store history
x_history.append(current_x)
y_history.append(current_y)
yaw_history.append(current_yaw)
speed_history.append(current_speed)
time_history.append(current_timestamp)
###
# Controller update (this uses the controller2d.py implementation)
###
# To reduce the amount of waypoints sent to the controller,
# provide a subset of waypoints that are within some
# lookahead distance from the closest point to the car. Provide
# a set of waypoints behind the car as well.
# Find closest waypoint index to car. First increment the index
# from the previous index until the new distance calculations
# are increasing. Apply the same rule decrementing the index.
# The final index should be the closest point (it is assumed that
# the car will always break out of instability points where there
# are two indices with the same minimum distance, as in the
# center of a circle)
closest_distance = np.linalg.norm(np.array([
waypoints_np[closest_index, 0] - current_x,
waypoints_np[closest_index, 1] - current_y]))
new_distance = closest_distance
new_index = closest_index
while new_distance <= closest_distance:
closest_distance = new_distance
closest_index = new_index
new_index += 1
if new_index >= waypoints_np.shape[0]: # End of path
break
new_distance = np.linalg.norm(np.array([
waypoints_np[new_index, 0] - current_x,
waypoints_np[new_index, 1] - current_y]))
new_distance = closest_distance
new_index = closest_index
while new_distance <= closest_distance:
closest_distance = new_distance
closest_index = new_index
new_index -= 1
if new_index < 0: # Beginning of path
break
new_distance = np.linalg.norm(np.array([
waypoints_np[new_index, 0] - current_x,
waypoints_np[new_index, 1] - current_y]))
# Once the closest index is found, return the path that has 1
# waypoint behind and X waypoints ahead, where X is the index
# that has a lookahead distance specified by
# INTERP_LOOKAHEAD_DISTANCE
waypoint_subset_first_index = closest_index - 1
if waypoint_subset_first_index < 0:
waypoint_subset_first_index = 0
waypoint_subset_last_index = closest_index
total_distance_ahead = 0
while total_distance_ahead < INTERP_LOOKAHEAD_DISTANCE:
total_distance_ahead += wp_distance[waypoint_subset_last_index]
waypoint_subset_last_index += 1
if waypoint_subset_last_index >= waypoints_np.shape[0]:
waypoint_subset_last_index = waypoints_np.shape[0] - 1
break
#print("length of wp_interp",len(wp_interp))
#print("new_index :",new_index)
#print("waypoint_subset_first_index :",waypoint_subset_first_index)
#print("waypoint_subset_last_index :",waypoint_subset_last_index)
#print("wp_interp_hash[waypoint_subset_first_index] :",wp_interp_hash[waypoint_subset_first_index])
#print("wp_interp_hash[waypoint_subset_last_index] :",wp_interp_hash[waypoint_subset_last_index])
# Use the first and last waypoint subset indices into the hash
# table to obtain the first and last indicies for the interpolated
# list. Update the interpolated waypoints to the controller
# for the next controller update.
new_waypoints = \
wp_interp[wp_interp_hash[waypoint_subset_first_index]:\
wp_interp_hash[waypoint_subset_last_index] + 1]
controller.update_waypoints(new_waypoints)
# Update the other controller values and controls
controller.update_values(current_x, current_y, current_yaw,
current_speed,
current_timestamp, frame, new_distance)
controller.update_controls()
cmd_throttle, cmd_steer, cmd_brake = controller.get_commands()
# Skip the first frame (so the controller has proper outputs)
if skip_first_frame and frame == 0:
pass
else:
# Update live plotter with new feedback
trajectory_fig.roll("trajectory", current_x, current_y)
trajectory_fig.roll("car", current_x, current_y)
# When plotting lookahead path, only plot a number of points
# (INTERP_MAX_POINTS_PLOT amount of points). This is meant
# to decrease load when live plotting
new_waypoints_np = np.array(new_waypoints)
path_indices = np.floor(np.linspace(0,
new_waypoints_np.shape[0]-1,
INTERP_MAX_POINTS_PLOT))
"""
trajectory_fig.update("lookahead_path",
new_waypoints_np[path_indices.astype(int), 0],
new_waypoints_np[path_indices.astype(int), 1],
new_colour=[0, 0.7, 0.7])
"""
forward_speed_fig.roll("forward_speed",
current_timestamp,
current_speed*3.6) # m/s to km/h
forward_speed_fig.roll("reference_signal",
current_timestamp,
controller._desired_speed*3.6) # m/s to km/h
throttle_fig.roll("throttle", current_timestamp, cmd_throttle*100)
#brake_fig.roll("brake", current_timestamp, cmd_brake)
steer_fig.roll("steer", current_timestamp, cmd_steer*180/np.pi)
# Refresh the live plot based on the refresh rate
# set by the options
if enable_live_plot and \
live_plot_timer.has_exceeded_lap_period():
lp_traj.refresh()
lp_1d.refresh()
live_plot_timer.lap()
# Output controller command to CARLA server
send_control_command(client,
throttle=cmd_throttle,
steer=cmd_steer,
brake=cmd_brake)
# Find if reached the end of waypoint. If the car is within
# DIST_THRESHOLD_TO_LAST_WAYPOINT to the last waypoint,
# the simulation will end.
dist_to_last_waypoint = np.linalg.norm(np.array([
waypoints[-1][0] - current_x,
waypoints[-1][1] - current_y]))
if dist_to_last_waypoint < DIST_THRESHOLD_TO_LAST_WAYPOINT:
reached_the_end = True
if reached_the_end:
break
# End of demo - Stop vehicle and Store outputs to the controller output
# directory.
if reached_the_end:
print("Reached the end of path. Writing to controller_output...")
else:
print("Exceeded assessment time. Writing to controller_output...")
# Stop the car
send_control_command(client, throttle=0.0, steer=0.0, brake=1.0)
# Store the various outputs
store_trajectory_plot(trajectory_fig.fig, 'trajectory.png')
store_trajectory_plot(forward_speed_fig.fig, 'forward_speed.png')
store_trajectory_plot(throttle_fig.fig, 'throttle_output.png')
#store_trajectory_plot(brake_fig.fig, 'brake_output.png')
store_trajectory_plot(steer_fig.fig, 'steer_output.png')
write_trajectory_file(x_history, y_history, speed_history, time_history)
def main():
"""Main function.
Args:
-v, --verbose: print debug information
--host: IP of the host server (default: localhost)
-p, --port: TCP port to listen to (default: 2000)
-a, --autopilot: enable autopilot
-q, --quality-level: graphics quality level [Low or Epic]
-i, --images-to-disk: save images to disk
-c, --carla-settings: Path to CarlaSettings.ini file
"""
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='enable autopilot')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Low',
help='graphics quality level.')
argparser.add_argument(
'-c', '--carla-settings',
metavar='PATH',
dest='settings_filepath',
default=None,
help='Path to a "CarlaSettings.ini" file')
args = argparser.parse_args()
# Logging startup info
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
args.out_filename_format = '_out/episode_{:0>4d}/{:s}/{:0>6d}'
# Execute when server connection is established
while True:
try:
exec_waypoint_nav_demo(args)
print('Done.')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')