@@ -19595,23 +19595,23 @@
19595
19595
Let \tcode{\exposid{REQUIRED-SPAN-SIZE}(e, strides)} be:
19596
19596
\begin{itemize}
19597
19597
\item
19598
- \tcode{1}, if \tcode{e.rank() == 0} is \tcode{true}, otherwise
19598
+ \tcode{1}, if \tcode{e.rank() == 0} is \tcode{true},
19599
19599
\item
19600
- \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, otherwise
19600
+ otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0,
19601
19601
\item
19602
- \tcode{1} plus the sum of products of \tcode{(e.extent($r$) - 1)} and \tcode{strides[$r$]}
19602
+ otherwise \tcode{1} plus the sum of products of \tcode{(e.extent($r$) - 1)} and \tcode{strides[$r$]}
19603
19603
for all $r$ in the range $[0, \tcode{e.rank()})$.
19604
19604
\end{itemize}
19605
19605
19606
19606
\pnum
19607
19607
Let \tcode{\exposid{OFFSET}(m)} be:
19608
19608
\begin{itemize}
19609
19609
\item
19610
- \tcode{m()}, if \tcode{e.rank() == 0} is \tcode{true}, otherwise
19610
+ \tcode{m()}, if \tcode{e.rank() == 0} is \tcode{true},
19611
19611
\item
19612
- \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, otherwise
19612
+ otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0,
19613
19613
\item
19614
- \tcode{m(z...)} for a pack of integers \tcode{z}
19614
+ otherwise \tcode{m(z...)} for a pack of integers \tcode{z}
19615
19615
that is a multidimensional index in \tcode{m.extents()} and
19616
19616
each element of \tcode{z} equals 0.
19617
19617
\end{itemize}
0 commit comments