forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaffe.cpp
232 lines (207 loc) · 7.17 KB
/
caffe.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <glog/logging.h>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include "caffe/caffe.hpp"
using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::shared_ptr;
using caffe::Timer;
using caffe::vector;
DEFINE_int32(gpu, -1,
"Run in GPU mode on given device ID.");
DEFINE_string(solver, "",
"The solver definition protocol buffer text file.");
DEFINE_string(model, "",
"The model definition protocol buffer text file..");
DEFINE_string(snapshot, "",
"Optional; the snapshot solver state to resume training.");
DEFINE_string(weights, "",
"Optional; the pretrained weights to initialize finetuning. "
"Cannot be set simultaneously with snapshot.");
DEFINE_int32(iterations, 50,
"The number of iterations to run.");
// A simple registry for caffe commands.
typedef int (*BrewFunction)();
typedef std::map<caffe::string, BrewFunction> BrewMap;
BrewMap g_brew_map;
#define RegisterBrewFunction(func) \
namespace { \
class __Registerer_##func { \
public: /* NOLINT */ \
__Registerer_##func() { \
g_brew_map[#func] = &func; \
} \
}; \
__Registerer_##func g_registerer_##func; \
}
static BrewFunction GetBrewFunction(const caffe::string& name) {
if (g_brew_map.count(name)) {
return g_brew_map[name];
} else {
LOG(ERROR) << "Available caffe actions:";
for (BrewMap::iterator it = g_brew_map.begin();
it != g_brew_map.end(); ++it) {
LOG(ERROR) << "\t" << it->first;
}
LOG(FATAL) << "Unknown action: " << name;
return NULL; // not reachable, just to suppress old compiler warnings.
}
}
// caffe commands to call by
// caffe <command> <args>
//
// To add a command, define a function "int command()" and register it with
// RegisterBrewFunction(action);
// Device Query: show diagnostic information for a GPU device.
int device_query() {
CHECK_GT(FLAGS_gpu, -1) << "Need a device ID to query.";
LOG(INFO) << "Querying device ID = " << FLAGS_gpu;
caffe::Caffe::SetDevice(FLAGS_gpu);
caffe::Caffe::DeviceQuery();
return 0;
}
RegisterBrewFunction(device_query);
// Train / Finetune a model.
int train() {
CHECK_GT(FLAGS_solver.size(), 0) << "Need a solver definition to train.";
CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())
<< "Give a snapshot to resume training or weights to finetune "
"but not both.";
caffe::SolverParameter solver_param;
caffe::ReadProtoFromTextFileOrDie(FLAGS_solver, &solver_param);
LOG(INFO) << "Starting Optimization";
caffe::SGDSolver<float> solver(solver_param);
if (FLAGS_snapshot.size()) {
LOG(INFO) << "Resuming from " << FLAGS_snapshot;
solver.Solve(FLAGS_snapshot);
} else if (FLAGS_weights.size()) {
LOG(INFO) << "Finetuning from " << FLAGS_weights;
solver.net()->CopyTrainedLayersFrom(FLAGS_weights);
solver.Solve();
} else {
solver.Solve();
}
LOG(INFO) << "Optimization Done.";
return 0;
}
RegisterBrewFunction(train);
// Test: score a model.
int test() {
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score.";
CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score.";
// Set device id and mode
if (FLAGS_gpu >= 0) {
LOG(INFO) << "Use GPU with device ID " << FLAGS_gpu;
Caffe::SetDevice(FLAGS_gpu);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Caffe::set_phase(Caffe::TEST);
Net<float> caffe_net(FLAGS_model);
caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
LOG(INFO) << "Running for " << FLAGS_iterations << " iterations.";
double test_score = 0;
for (int i = 0; i < FLAGS_iterations; ++i) {
const vector<Blob<float>*>& result = caffe_net.ForwardPrefilled();
test_score += result[0]->cpu_data()[0];
LOG(INFO) << "Batch " << i << ", score: " << result[0]->cpu_data()[0];
}
test_score /= FLAGS_iterations;
LOG(INFO) << "Score: " << test_score;
return 0;
}
RegisterBrewFunction(test);
// Time: benchmark the execution time of a model.
int time() {
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time.";
// Set device id and mode
if (FLAGS_gpu >= 0) {
LOG(INFO) << "Use GPU with device ID " << FLAGS_gpu;
Caffe::SetDevice(FLAGS_gpu);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Caffe::set_phase(Caffe::TRAIN);
Net<float> caffe_net(FLAGS_model);
// Do a clean forward and backward pass, so that memory allocation are done
// and future iterations will be more stable.
LOG(INFO) << "Performing Forward";
// Note that for the speed benchmark, we will assume that the network does
// not take any input blobs.
float initial_loss;
caffe_net.Forward(vector<Blob<float>*>(), &initial_loss);
LOG(INFO) << "Initial loss: " << initial_loss;
LOG(INFO) << "Performing Backward";
caffe_net.Backward();
const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
const vector<vector<bool> >& bottom_need_backward =
caffe_net.bottom_need_backward();
LOG(INFO) << "*** Benchmark begins ***";
LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations.";
Timer total_timer;
total_timer.Start();
Timer forward_timer;
forward_timer.Start();
Timer timer;
for (int i = 0; i < layers.size(); ++i) {
const caffe::string& layername = layers[i]->layer_param().name();
timer.Start();
for (int j = 0; j < FLAGS_iterations; ++j) {
layers[i]->Forward(bottom_vecs[i], &top_vecs[i]);
}
LOG(INFO) << layername << "\tforward: " << timer.MilliSeconds() <<
" milli seconds.";
}
LOG(INFO) << "Forward pass: " << forward_timer.MilliSeconds() <<
" milli seconds.";
Timer backward_timer;
backward_timer.Start();
for (int i = layers.size() - 1; i >= 0; --i) {
const caffe::string& layername = layers[i]->layer_param().name();
timer.Start();
for (int j = 0; j < FLAGS_iterations; ++j) {
layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
&bottom_vecs[i]);
}
LOG(INFO) << layername << "\tbackward: "
<< timer.MilliSeconds() << " milli seconds.";
}
LOG(INFO) << "Backward pass: " << backward_timer.MilliSeconds() <<
" milli seconds.";
LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() <<
" milli seconds.";
LOG(INFO) << "*** Benchmark ends ***";
return 0;
}
RegisterBrewFunction(time);
int main(int argc, char** argv) {
// Print output to stderr (while still logging).
FLAGS_alsologtostderr = 1;
// Usage message.
gflags::SetUsageMessage("command line brew\n"
"usage: caffe <command> <args>\n\n"
"commands:\n"
" train train or finetune a model\n"
" test score a model\n"
" device_query show GPU diagnostic information\n"
" time benchmark model execution time");
// Run tool or show usage.
caffe::GlobalInit(&argc, &argv);
if (argc == 2) {
return GetBrewFunction(caffe::string(argv[1]))();
} else {
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/caffe");
}
}