forked from alexforencich/verilog-i2c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathi2c_slave.v
503 lines (416 loc) · 16.1 KB
/
i2c_slave.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
Copyright (c) 2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* I2C slave
*/
module i2c_slave #(
parameter FILTER_LEN = 4
)
(
input wire clk,
input wire rst,
/*
* Host interface
*/
input wire release_bus,
input wire [7:0] s_axis_data_tdata,
input wire s_axis_data_tvalid,
output wire s_axis_data_tready,
input wire s_axis_data_tlast,
output wire [7:0] m_axis_data_tdata,
output wire m_axis_data_tvalid,
input wire m_axis_data_tready,
output wire m_axis_data_tlast,
/*
* I2C interface
*/
input wire scl_i,
output wire scl_o,
output wire scl_t,
input wire sda_i,
output wire sda_o,
output wire sda_t,
/*
* Status
*/
output wire busy,
output wire [6:0] bus_address,
output wire bus_addressed,
output wire bus_active,
/*
* Configuration
*/
input wire enable,
input wire [6:0] device_address,
input wire [6:0] device_address_mask
);
/*
I2C
Read
__ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __
sda \__/_6_X_5_X_4_X_3_X_2_X_1_X_0_\_R___A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A____/
____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____
scl ST \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ SP
Write
__ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __
sda \__/_6_X_5_X_4_X_3_X_2_X_1_X_0_/ W \_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_\_A_/_7_X_6_X_5_X_4_X_3_X_2_X_1_X_0_/ N \__/
____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____
scl ST \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ SP
Operation:
This module translates I2C read and write operations into AXI stream transfers.
Bytes written over I2C will be delayed by one byte time so that the last byte
in a write operation can be accurately marked. When reading, the module will
stretch SCL by holding it low until a data byte is presented at the AXI stream
input.
Control:
release_bus
releases control over bus
Status:
busy
module is communicating over the bus
bus_address
active address on bus when module is addressed
bus_addressed
module is currently addressed on the bus
bus_active
bus is active, not necessarily controlled by this module
Parameters:
device_address
address of slave device
device_address_mask
select which bits of device address to compare, set to 7'h7f
to check all bits (single address device)
Example of interfacing with tristate pins:
(this will work for any tristate bus)
assign scl_i = scl_pin;
assign scl_pin = scl_t ? 1'bz : scl_o;
assign sda_i = sda_pin;
assign sda_pin = sda_t ? 1'bz : sda_o;
Equivalent code that does not use *_t connections:
(we can get away with this because I2C is open-drain)
assign scl_i = scl_pin;
assign scl_pin = scl_o ? 1'bz : 1'b0;
assign sda_i = sda_pin;
assign sda_pin = sda_o ? 1'bz : 1'b0;
Example of two interconnected I2C devices:
assign scl_1_i = scl_1_o & scl_2_o;
assign scl_2_i = scl_1_o & scl_2_o;
assign sda_1_i = sda_1_o & sda_2_o;
assign sda_2_i = sda_1_o & sda_2_o;
Example of two I2C devices sharing the same pins:
assign scl_1_i = scl_pin;
assign scl_2_i = scl_pin;
assign scl_pin = (scl_1_o & scl_2_o) ? 1'bz : 1'b0;
assign sda_1_i = sda_pin;
assign sda_2_i = sda_pin;
assign sda_pin = (sda_1_o & sda_2_o) ? 1'bz : 1'b0;
Notes:
scl_o should not be connected directly to scl_i, only via AND logic or a tristate
I/O pin. This would prevent devices from stretching the clock period.
*/
localparam [4:0]
STATE_IDLE = 4'd0,
STATE_ADDRESS = 4'd1,
STATE_ACK = 4'd2,
STATE_WRITE_1 = 4'd3,
STATE_WRITE_2 = 4'd4,
STATE_READ_1 = 4'd5,
STATE_READ_2 = 4'd6,
STATE_READ_3 = 4'd7;
reg [4:0] state_reg = STATE_IDLE, state_next;
reg [6:0] addr_reg = 7'd0, addr_next;
reg [7:0] data_reg = 8'd0, data_next;
reg data_valid_reg = 1'b0, data_valid_next;
reg data_out_reg_valid_reg = 1'b0, data_out_reg_valid_next;
reg last_reg = 1'b0, last_next;
reg mode_read_reg = 1'b0, mode_read_next;
reg [3:0] bit_count_reg = 4'd0, bit_count_next;
reg s_axis_data_tready_reg = 1'b0, s_axis_data_tready_next;
reg [7:0] m_axis_data_tdata_reg = 8'd0, m_axis_data_tdata_next;
reg m_axis_data_tvalid_reg = 1'b0, m_axis_data_tvalid_next;
reg m_axis_data_tlast_reg = 1'b0, m_axis_data_tlast_next;
reg [FILTER_LEN-1:0] scl_i_filter = {FILTER_LEN{1'b1}};
reg [FILTER_LEN-1:0] sda_i_filter = {FILTER_LEN{1'b1}};
reg scl_i_reg = 1'b1;
reg sda_i_reg = 1'b1;
reg scl_o_reg = 1'b1, scl_o_next;
reg sda_o_reg = 1'b1, sda_o_next;
reg last_scl_i_reg = 1'b1;
reg last_sda_i_reg = 1'b1;
reg busy_reg = 1'b0;
reg bus_active_reg = 1'b0;
reg bus_addressed_reg = 1'b0, bus_addressed_next;
assign bus_address = addr_reg;
assign s_axis_data_tready = s_axis_data_tready_reg;
assign m_axis_data_tdata = m_axis_data_tdata_reg;
assign m_axis_data_tvalid = m_axis_data_tvalid_reg;
assign m_axis_data_tlast = m_axis_data_tlast_reg;
assign scl_o = scl_o_reg;
assign scl_t = scl_o_reg;
assign sda_o = sda_o_reg;
assign sda_t = sda_o_reg;
assign busy = busy_reg;
assign bus_active = bus_active_reg;
assign bus_addressed = bus_addressed_reg;
assign scl_posedge = scl_i_reg && !last_scl_i_reg;
assign scl_negedge = !scl_i_reg && last_scl_i_reg;
assign sda_posedge = sda_i_reg && !last_sda_i_reg;
assign sda_negedge = !sda_i_reg && last_sda_i_reg;
assign start_bit = sda_negedge && scl_i_reg;
assign stop_bit = sda_posedge && scl_i_reg;
always @* begin
state_next = STATE_IDLE;
addr_next = addr_reg;
data_next = data_reg;
data_valid_next = data_valid_reg;
data_out_reg_valid_next = data_out_reg_valid_reg;
last_next = last_reg;
mode_read_next = mode_read_reg;
bit_count_next = bit_count_reg;
s_axis_data_tready_next = 1'b0;
m_axis_data_tdata_next = m_axis_data_tdata_reg;
m_axis_data_tvalid_next = m_axis_data_tvalid_reg && !m_axis_data_tready;
m_axis_data_tlast_next = m_axis_data_tlast_reg;
scl_o_next = scl_o_reg;
sda_o_next = sda_o_reg;
bus_addressed_next = bus_addressed_reg;
if (start_bit) begin
// got start bit, latch out data, read address
data_valid_next = 1'b0;
data_out_reg_valid_next = 1'b0;
bit_count_next = 4'd7;
m_axis_data_tlast_next = 1'b1;
m_axis_data_tvalid_next = data_out_reg_valid_reg;
bus_addressed_next = 1'b0;
state_next = STATE_ADDRESS;
end else if (release_bus || stop_bit) begin
// got stop bit or release bus command, latch out data, return to idle
data_valid_next = 1'b0;
data_out_reg_valid_next = 1'b0;
m_axis_data_tlast_next = 1'b1;
m_axis_data_tvalid_next = data_out_reg_valid_reg;
bus_addressed_next = 1'b0;
state_next = STATE_IDLE;
end else begin
case (state_reg)
STATE_IDLE: begin
// line idle
data_valid_next = 1'b0;
data_out_reg_valid_next = 1'b0;
bus_addressed_next = 1'b0;
state_next = STATE_IDLE;
end
STATE_ADDRESS: begin
// read address
if (scl_posedge) begin
if (bit_count_reg > 0) begin
// shift in address
bit_count_next = bit_count_reg-1;
data_next = {data_reg[6:0], sda_i_reg};
state_next = STATE_ADDRESS;
end else begin
// check address
if (enable && (device_address & device_address_mask) == (data_reg[6:0] & device_address_mask)) begin
// it's a match, save read/write bit and send ACK
addr_next = data_reg[6:0];
mode_read_next = sda_i_reg;
bus_addressed_next = 1'b1;
state_next = STATE_ACK;
end else begin
// no match, return to idle
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_ADDRESS;
end
end
STATE_ACK: begin
// send ACK bit
if (scl_negedge) begin
sda_o_next = 1'b0;
bit_count_next = 4'd7;
if (mode_read_reg) begin
// reading
s_axis_data_tready_next = 1'b1;
data_valid_next = 1'b0;
state_next = STATE_READ_1;
end else begin
// writing
state_next = STATE_WRITE_1;
end
end else begin
state_next = STATE_ACK;
end
end
STATE_WRITE_1: begin
// write data byte
if (scl_negedge || !scl_o_reg) begin
sda_o_next = 1'b1;
if (m_axis_data_tvalid && !m_axis_data_tready) begin
// data waiting in output register, so stretch clock
scl_o_next = 1'b0;
state_next = STATE_WRITE_1;
end else begin
scl_o_next = 1'b1;
if (data_valid_reg) begin
// store data in output register
m_axis_data_tdata_next = data_reg;
m_axis_data_tlast_next = 1'b0;
end
data_valid_next = 1'b0;
data_out_reg_valid_next = data_valid_reg;
state_next = STATE_WRITE_2;
end
end else begin
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_2: begin
// write data byte
if (scl_posedge) begin
// shift in data bit
data_next = {data_reg[6:0], sda_i_reg};
if (bit_count_reg > 0) begin
bit_count_next = bit_count_reg-1;
state_next = STATE_WRITE_2;
end else begin
// latch out previous data byte since we now know it's not the last one
m_axis_data_tvalid_next = data_out_reg_valid_reg;
data_out_reg_valid_next = 1'b0;
data_valid_next = 1'b1;
state_next = STATE_ACK;
end
end else begin
state_next = STATE_WRITE_2;
end
end
STATE_READ_1: begin
// read data byte
if (s_axis_data_tready && s_axis_data_tvalid) begin
// data valid; latch it in
s_axis_data_tready_next = 1'b0;
data_next = s_axis_data_tdata;
data_valid_next = 1'b1;
end else begin
// keep ready high if we're waiting for data
s_axis_data_tready_next = !data_valid_reg;
end
if (scl_negedge || !scl_o_reg) begin
// shift out data bit
if (!data_valid_reg) begin
// waiting for data, so stretch clock
scl_o_next = 1'b0;
state_next = STATE_READ_1;
end else begin
scl_o_next = 1'b1;
{sda_o_next, data_next} = {data_reg, 1'b0};
if (bit_count_reg > 0) begin
bit_count_next = bit_count_reg-1;
state_next = STATE_READ_1;
end else begin
state_next = STATE_READ_2;
end
end
end else begin
state_next = STATE_READ_1;
end
end
STATE_READ_2: begin
// read ACK bit
if (scl_negedge) begin
// release SDA
sda_o_next = 1'b1;
state_next = STATE_READ_3;
end else begin
state_next = STATE_READ_2;
end
end
STATE_READ_3: begin
// read ACK bit
if (scl_posedge) begin
if (sda_i_reg) begin
// NACK, return to idle
state_next = STATE_IDLE;
end else begin
// ACK, read another byte
bit_count_next = 4'd7;
s_axis_data_tready_next = 1'b1;
data_valid_next = 1'b0;
state_next = STATE_READ_1;
end
end else begin
state_next = STATE_READ_3;
end
end
endcase
end
end
always @(posedge clk) begin
state_reg <= state_next;
addr_reg <= addr_next;
data_reg <= data_next;
data_valid_reg <= data_valid_next;
data_out_reg_valid_reg <= data_out_reg_valid_next;
last_reg <= last_next;
mode_read_reg <= mode_read_next;
bit_count_reg <= bit_count_next;
s_axis_data_tready_reg <= s_axis_data_tready_next;
m_axis_data_tdata_reg <= m_axis_data_tdata_next;
m_axis_data_tvalid_reg <= m_axis_data_tvalid_next;
m_axis_data_tlast_reg <= m_axis_data_tlast_next;
scl_i_filter <= (scl_i_filter << 1) | scl_i;
sda_i_filter <= (sda_i_filter << 1) | sda_i;
if (scl_i_filter == {FILTER_LEN{1'b1}}) begin
scl_i_reg <= 1'b1;
end else if (scl_i_filter == {FILTER_LEN{1'b0}}) begin
scl_i_reg <= 1'b0;
end
if (sda_i_filter == {FILTER_LEN{1'b1}}) begin
sda_i_reg <= 1'b1;
end else if (sda_i_filter == {FILTER_LEN{1'b0}}) begin
sda_i_reg <= 1'b0;
end
scl_o_reg <= scl_o_next;
sda_o_reg <= sda_o_next;
last_scl_i_reg <= scl_i_reg;
last_sda_i_reg <= sda_i_reg;
busy_reg <= !(state_reg == STATE_IDLE);
if (start_bit) begin
bus_active_reg <= 1'b1;
end else if (stop_bit) begin
bus_active_reg <= 1'b0;
end else begin
bus_active_reg <= bus_active_reg;
end
bus_addressed_reg <= bus_addressed_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_data_tready_reg <= 1'b0;
m_axis_data_tvalid_reg <= 1'b0;
scl_o_reg <= 1'b1;
sda_o_reg <= 1'b1;
busy_reg <= 1'b0;
bus_active_reg <= 1'b0;
bus_addressed_reg <= 1'b0;
end
end
endmodule