forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.h
130 lines (107 loc) · 3.4 KB
/
layer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifndef NCNN_LAYER_H
#define NCNN_LAYER_H
#include <stdio.h>
#include <string>
#include <vector>
#include "mat.h"
#include "modelbin.h"
#include "paramdict.h"
#include "platform.h"
namespace ncnn {
class Allocator;
class Option
{
public:
// default option
Option();
public:
// light mode
// intermediate blob will be recycled when enabled
// enabled by default
bool lightmode;
// thread count
// default value is the one returned by get_cpu_count()
int num_threads;
// blob memory allocator
Allocator* blob_allocator;
// workspace memory allocator
Allocator* workspace_allocator;
};
// the global default option
const Option& get_default_option();
int set_default_option(const Option& opt);
class Layer
{
public:
// empty
Layer();
// virtual destructor
virtual ~Layer();
// load layer specific parameter from parsed dict
// return 0 if success
virtual int load_param(const ParamDict& pd);
// load layer specific weight data from model binary
// return 0 if success
virtual int load_model(const ModelBin& mb);
public:
// one input and one output blob
bool one_blob_only;
// support inplace inference
bool support_inplace;
public:
// implement inference
// return 0 if success
virtual int forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs, const Option& opt = get_default_option()) const;
virtual int forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt = get_default_option()) const;
// implement inplace inference
// return 0 if success
virtual int forward_inplace(std::vector<Mat>& bottom_top_blobs, const Option& opt = get_default_option()) const;
virtual int forward_inplace(Mat& bottom_top_blob, const Option& opt = get_default_option()) const;
public:
#if NCNN_STRING
// layer type name
std::string type;
// layer name
std::string name;
#endif // NCNN_STRING
// blob index which this layer needs as input
std::vector<int> bottoms;
// blob index which this layer produces as output
std::vector<int> tops;
};
// layer factory function
typedef Layer* (*layer_creator_func)();
struct layer_registry_entry
{
#if NCNN_STRING
// layer type name
const char* name;
#endif // NCNN_STRING
// layer factory entry
layer_creator_func creator;
};
#if NCNN_STRING
// get layer type from type name
int layer_to_index(const char* type);
// create layer from type name
Layer* create_layer(const char* type);
#endif // NCNN_STRING
// create layer from layer type
Layer* create_layer(int index);
#define DEFINE_LAYER_CREATOR(name) \
::ncnn::Layer* name##_layer_creator() { return new name; }
} // namespace ncnn
#endif // NCNN_LAYER_H