forked from gliese581gg/DQN_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatabase.py
60 lines (53 loc) · 1.95 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import gc
import time
import cv2
class database:
def __init__(self, params):
self.size = params['db_size']
self.img_scale = params['img_scale']
self.states = np.zeros([self.size,84,84],dtype='uint8') #image dimensions
self.actions = np.zeros(self.size,dtype='float32')
self.terminals = np.zeros(self.size,dtype='float32')
self.rewards = np.zeros(self.size,dtype='float32')
self.bat_size = params['batch']
self.bat_s = np.zeros([self.bat_size,84,84,4])
self.bat_a = np.zeros([self.bat_size])
self.bat_t = np.zeros([self.bat_size])
self.bat_n = np.zeros([self.bat_size,84,84,4])
self.bat_r = np.zeros([self.bat_size])
self.counter = 0 #keep track of next empty state
self.flag = False
return
def get_batches(self):
for i in range(self.bat_size):
idx = 0
while idx < 3 or (idx > self.counter-2 and idx < self.counter+3):
idx = np.random.randint(3,self.get_size()-1)
self.bat_s[i] = np.transpose(self.states[idx-3:idx+1,:,:],(1,2,0))/self.img_scale
self.bat_n[i] = np.transpose(self.states[idx-2:idx+2,:,:],(1,2,0))/self.img_scale
self.bat_a[i] = self.actions[idx]
self.bat_t[i] = self.terminals[idx]
self.bat_r[i] = self.rewards[idx]
#self.bat_s[0] = np.transpose(self.states[10:14,:,:],(1,2,0))/self.img_scale
#self.bat_n[0] = np.transpose(self.states[11:15,:,:],(1,2,0))/self.img_scale
#self.bat_a[0] = self.actions[13]
#self.bat_t[0] = self.terminals[13]
#self.bat_r[0] = self.rewards[13]
return self.bat_s,self.bat_a,self.bat_t,self.bat_n,self.bat_r
def insert(self, prevstate_proc,reward,action,terminal):
self.states[self.counter] = prevstate_proc
self.rewards[self.counter] = reward
self.actions[self.counter] = action
self.terminals[self.counter] = terminal
#update counter
self.counter += 1
if self.counter >= self.size:
self.flag = True
self.counter = 0
return
def get_size(self):
if self.flag == False:
return self.counter
else:
return self.size