-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
248 lines (207 loc) · 12.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import sys
import torch
import time
import math
import numpy as np
from torch.autograd import Variable
from utils import render_part_pcs, export_part_pcs, render_pc, export_pc
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'metrics'))
sys.path.append(os.path.join(BASE_DIR, 'sampling'))
from fid import FID
from subprocess import call
from sampling import furthest_point_sample
class Trainer(object):
def __init__(self, exp_name, generator, discriminator, args, device, flog, logger):
self.generator = generator
self.discriminator = discriminator
self.optimizer_g = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
self.optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999))
self.exp_name = exp_name
self.args = args
self.device = device
self.flog = flog
self.logger = logger
self.fid = FID(self.args.fid_mode, self.args.category, device, 'train')
def load_model(self, path):
checkpoint = torch.load(path)
self.generator.load_state_dict(checkpoint["generator_state_dict"])
self.discriminator.load_state_dict(checkpoint["discriminator_state_dict"])
self.optimizer_g.load_state_dict(checkpoint["generator_optimizer_state_dict"])
self.optimizer_d.load_state_dict(checkpoint["discriminator_optimizer_state_dict"])
def compute_gradient_penalty(self, pg_node, real_samples, fake_samples):
batch_size = real_samples.size(0)
alpha = torch.rand(batch_size, 1, 1, 1).to(self.device)
interp_samples = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
interp_score, _, _ = self.discriminator.forward(pg_node, interp_samples)
fake = torch.ones(interp_score.size()).to(self.device)
gradients = torch.autograd.grad(
outputs=interp_score,
inputs=interp_samples,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.contiguous().view(batch_size, -1)
gradient_penalty = ((gradients.pow(2).sum(dim=1) + 1e-4).sqrt() - 1) ** 2
return gradient_penalty
def train_iteration(self, dataset, data, iteration):
num_pg = len(data[0])
num_shape_per_pg = data[1][0].shape[0]
# get all pg-templates
pg_templates = []
for i in range(num_pg):
pg_templates.append(dataset.get_pg_template(data[0][i]))
# train discriminator
self.discriminator.train()
self.generator.eval()
self.optimizer_d.zero_grad()
real_score = []; fake_score = []; gradient_penalty = [];
real_sn_score = []; real_pn_score = [];
fake_sn_score = []; fake_pn_score = [];
for i in range(num_pg):
with torch.no_grad():
zs = torch.randn(num_shape_per_pg, self.args.z_dim).to(self.device)
fake_part_pcs = self.generator(pg_templates[i], zs).detach()
real_part_pcs = Variable(torch.Tensor(data[1][i]).to(self.device))
cur_real_score, cur_real_sn_score, cur_real_pn_score = self.discriminator(pg_templates[i], real_part_pcs)
real_score.append(cur_real_score); real_sn_score.append(cur_real_sn_score); real_pn_score.append(cur_real_pn_score);
cur_fake_score, cur_fake_sn_score, cur_fake_pn_score = self.discriminator(pg_templates[i], fake_part_pcs)
fake_score.append(cur_fake_score); fake_sn_score.append(cur_fake_sn_score); fake_pn_score.append(cur_fake_pn_score);
gradient_penalty.append(self.compute_gradient_penalty(pg_templates[i], real_part_pcs.data, fake_part_pcs.data))
real_score = torch.cat(real_score); real_sn_score = torch.cat(real_sn_score); real_pn_score = torch.cat(real_pn_score);
self.logger.add_scalar('real_score', torch.mean(real_score).item(), iteration)
fake_score = torch.cat(fake_score); fake_sn_score = torch.cat(fake_sn_score); fake_pn_score = torch.cat(fake_pn_score);
self.logger.add_scalar('fake_score', torch.mean(fake_score).item(), iteration)
gradient_penalty = torch.cat(gradient_penalty)
gradient_penalty = torch.mean(gradient_penalty)
self.logger.add_scalar("gradient_penalty", gradient_penalty.item(), iteration)
wasserstein_estimate = torch.mean(real_score) - torch.mean(fake_score)
self.logger.add_scalar('wasserstein_estimate', wasserstein_estimate.item(), iteration)
wasserstein_estimate_sn = torch.mean(real_sn_score) - torch.mean(fake_sn_score)
self.logger.add_scalar('wasserstein_estimate_sn', wasserstein_estimate_sn.item(), iteration)
wasserstein_estimate_pn = torch.mean(real_pn_score) - torch.mean(fake_pn_score)
self.logger.add_scalar('wasserstein_estimate_pn', wasserstein_estimate_pn.item(), iteration)
d_loss = self.args.loss_weight_gp * gradient_penalty - wasserstein_estimate
self.logger.add_scalar('train_d_loss', d_loss.item(), iteration)
d_loss.backward()
self.optimizer_d.step()
out_str = ' **Training DIS %s** [w_dist: %.4f] [real_scores: %.4f] [fake_scores: %.4f] [gp: %.4f]' \
% (self.exp_name, wasserstein_estimate.item(), torch.mean(real_score).item(), torch.mean(fake_score).item(), gradient_penalty.item())
print(out_str)
self.flog.write(out_str + '\n')
if iteration % self.args.n_critic == 0:
# train generator
self.discriminator.eval()
self.generator.train()
self.optimizer_g.zero_grad()
fake_score = [];
for i in range(num_pg):
zs = torch.randn(num_shape_per_pg, self.args.z_dim).to(self.device)
fake_part_pcs = self.generator(pg_templates[i], zs)
cur_fake_score, _, _ = self.discriminator(pg_templates[i], fake_part_pcs)
fake_score.append(cur_fake_score)
fake_score = torch.cat(fake_score)
g_loss = - torch.mean(fake_score)
self.logger.add_scalar('train_g_loss', g_loss.item(), iteration)
g_loss.backward()
self.optimizer_g.step()
out_str = ' **Training GEN %s** [fake_scores: %.4f]' \
% (self.exp_name, torch.mean(fake_score).item())
print(out_str)
self.flog.write(out_str + '\n')
def eval_metric(self, dataset, epoch):
self.generator.eval()
# generate fake pcs
with torch.no_grad():
fake_pcs = []
for i in range(self.args.num_fake_per_metric):
idx = np.random.choice(len(dataset))
pg_idx, _ = dataset[idx]
pg_template = dataset.get_pg_template(pg_idx)
z = torch.randn(1, self.args.z_dim).to(self.device)
gen_part_pc = self.generator(pg_template, z)
gen_pc = gen_part_pc.reshape(1, -1, 3)
gen_pc_idx = furthest_point_sample(gen_pc, self.args.num_point_per_shape)[0]
gen_pc = gen_pc[0, gen_pc_idx.long()]
gen_pc = gen_pc.cpu().detach().numpy()
fake_pcs.append(np.expand_dims(gen_pc, 0))
fake_pcs = np.concatenate(fake_pcs, 0)
# compute FPD score
fpd = self.fid.get_fid(fake_pcs)
self.logger.add_scalar('eval_fpd', fpd, epoch)
out_str = '##Eval Metric %s## [fpd: %.4f]' % (self.exp_name, fpd)
print(out_str)
self.flog.write(out_str + '\n')
def train(self, train_dataset, train_dataloader, start_iteration=0, start_epoch=0):
iteration = start_iteration
for epoch in range(start_epoch, self.args.max_epochs):
# train one epoch
out_str = '\n %s [Epoch %03d/%03d]' % (time.asctime(time.localtime(time.time())), epoch, self.args.max_epochs)
print(out_str)
self.flog.write(out_str + '\n')
for i, data in enumerate(train_dataloader):
self.train_iteration(train_dataset, data, iteration)
iteration = iteration + 1
if (epoch + 1) % self.args.epochs_per_metric == 0:
self.eval_metric(train_dataset, epoch)
if (epoch + 1) % self.args.epochs_per_eval == 0:
self.discriminator.eval()
self.generator.eval()
with torch.no_grad():
# save checkpoint
out_fn = os.path.join('log', self.args.exp_name, 'model_%06d.ckpt' % epoch)
out_str = 'Saving checkpoint to %s' % out_fn
print(out_str)
self.flog.write(out_str + '\n')
torch.save({
'discriminator_state_dict': self.discriminator.state_dict(),
'discriminator_optimizer_state_dict': self.optimizer_d.state_dict(),
'generator_state_dict': self.generator.state_dict(),
'generator_optimizer_state_dict': self.optimizer_g.state_dict(),
}, out_fn)
# visualize current results
if self.args.num_visu is not None:
cur_visu_dir = os.path.join('log', self.args.exp_name, 'visu-%08d' % epoch)
os.mkdir(cur_visu_dir)
cur_gen_dir = os.path.join(cur_visu_dir, 'gen')
os.mkdir(cur_gen_dir)
cur_gen2_dir = os.path.join(cur_visu_dir, 'gen2')
os.mkdir(cur_gen2_dir)
cur_real_dir = os.path.join(cur_visu_dir, 'real')
os.mkdir(cur_real_dir)
cur_info_dir = os.path.join(cur_visu_dir, 'info')
os.mkdir(cur_info_dir)
print('Visualizing ...')
self.flog.write('Visualizing ...\n')
for pg_idx in self.args.visu_pg_list:
pg_node = train_dataset.get_pg_template(pg_idx)
zs = torch.randn(self.args.num_visu, self.args.z_dim).to(self.device)
part_pcs = self.generator(pg_node, zs)
shape_pcs = part_pcs.view(self.args.num_visu, -1, 3)
shape_pc_id1 = torch.arange(self.args.num_visu).unsqueeze(1).repeat(1, self.args.num_point_per_shape).long().view(-1).to(self.device)
shape_pc_id2 = furthest_point_sample(shape_pcs, self.args.num_point_per_shape).long().view(-1)
shape_pcs = shape_pcs[shape_pc_id1, shape_pc_id2].view(self.args.num_visu, self.args.num_point_per_shape, 3)
real_names, real_part_pcs = train_dataset.get_pg_real_pcs(pg_idx, self.args.num_visu)
part_pcs = part_pcs.cpu().detach().numpy()
real_part_pcs = real_part_pcs.cpu().detach().numpy()
for pcid in range(self.args.num_visu):
fn = 'pg-%04d-shape-%04d' % (pg_idx, pcid)
render_part_pcs([part_pcs[pcid]], title_list=['shape-%04d' % pcid],
out_fn=os.path.join(cur_gen_dir, fn+'.png'))
export_part_pcs(os.path.join(cur_gen_dir, fn), part_pcs[pcid])
render_part_pcs([real_part_pcs[pcid]], title_list=['shape-%04d' % pcid],
out_fn=os.path.join(cur_real_dir, fn+'.png'))
export_part_pcs(os.path.join(cur_real_dir, fn), real_part_pcs[pcid])
cur_shape_pc = shape_pcs[pcid].cpu().detach().numpy()
render_pc(os.path.join(cur_gen2_dir, fn+'.png'), cur_shape_pc)
export_pc(os.path.join(cur_gen2_dir, fn+'.obj'), cur_shape_pc)
with open(os.path.join(cur_info_dir, fn+'.txt'), 'w') as fout:
fout.write('%s\n' % real_names[pcid])
sublist = 'gen,gen2,real,info'
cmd = 'cd %s && python %s . %d htmls %s %s > /dev/null' % (cur_visu_dir, \
os.path.join(BASE_DIR, 'gen_html_hierachy_local.py'), self.args.num_visu, sublist, sublist)
call(cmd, shell=True)
self.flog.flush()