-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_gen.py
149 lines (105 loc) · 5.18 KB
/
model_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
from data import Tree
import utils
class TemplateChildrenEncoder(nn.Module):
def __init__(self, feat_len, hidden_len, symmetric_type, max_part_per_parent):
super(TemplateChildrenEncoder, self).__init__()
print(f'Using Template Symmetric Type: {symmetric_type}')
self.symmetric_type = symmetric_type
self.child_op = nn.Linear(feat_len + Tree.num_sem + max_part_per_parent, hidden_len)
self.second = nn.Linear(hidden_len, feat_len)
def forward(self, child_feats):
child_feats = F.leaky_relu(self.child_op(child_feats))
if self.symmetric_type == 'max':
parent_feat = child_feats.max(dim=1)[0]
elif self.symmetric_type == 'sum':
parent_feat = child_feats.sum(dim=1)
elif self.symmetric_type == 'avg':
parent_feat = child_feats.mean(dim=1)
else:
raise ValueError(f'Unknown symmetric type: {self.symmetric_type}')
parent_feat = F.leaky_relu(self.second(parent_feat))
return parent_feat
class TemplateEncoder(nn.Module):
def __init__(self, feat_len, hidden_len, symmetric_type, max_part_per_parent, device):
super(TemplateEncoder, self).__init__()
self.feat_len = feat_len
self.device = device
self.max_part_per_parent = max_part_per_parent
self.template_children_encoder = TemplateChildrenEncoder(feat_len, hidden_len, symmetric_type, max_part_per_parent)
def encode(self, node):
if len(node.children) == 0:
ret = torch.zeros(1, self.feat_len).to(self.device)
else:
child_feats = []
for cnode in node.children:
cur_child_feat = torch.cat([self.encode(cnode), \
cnode.get_semantic_one_hot(), \
cnode.get_group_ins_one_hot(self.max_part_per_parent)], dim=1)
child_feats.append(cur_child_feat.unsqueeze(dim=1))
child_feats = torch.cat(child_feats, dim=1)
ret = self.template_children_encoder(child_feats)
node.template_feature = ret
return ret
def forward(self, node):
return self.encode(node)
class PartDecoder(nn.Module):
def __init__(self, feat_len):
super(PartDecoder, self).__init__()
self.mlp1 = nn.Linear(feat_len + 3, 1024)
self.mlp2 = nn.Linear(1024, 1024)
self.mlp3 = nn.Linear(1024, 3)
def forward(self, feat, pc):
num_point = pc.shape[0]
batch_size = feat.shape[0]
net = torch.cat([feat.unsqueeze(dim=1).repeat(1, num_point, 1), \
pc.unsqueeze(dim=0).repeat(batch_size, 1, 1)], dim=-1)
net = F.leaky_relu(self.mlp1(net))
net = F.leaky_relu(self.mlp2(net))
net = self.mlp3(net)
return net
class Network(nn.Module):
def __init__(self, args, device):
super(Network, self).__init__()
self.template_encoder = TemplateEncoder(args.template_feat_len, args.hidden_len, args.template_symmetric_type, args.max_part_per_parent, device)
self.part_decoder = PartDecoder(args.feat_len)
self.max_part_per_parent = args.max_part_per_parent
self.mlp1 = nn.Linear(args.feat_len + Tree.num_sem + args.template_feat_len + self.max_part_per_parent, args.hidden_len)
self.mlp2 = nn.Linear(args.hidden_len, args.feat_len)
self.register_buffer('base_pc', torch.from_numpy(utils.load_pts('cube.pts')))
def decode(self, node, feat, leaf_feats):
if len(node.children) == 0:
leaf_feats[node.geo_id] = feat.unsqueeze(dim=1)
else:
batch_size = feat.shape[0]
for cnode in node.children:
net = torch.cat([feat, \
cnode.get_semantic_one_hot().repeat(batch_size, 1), \
cnode.template_feature.repeat(batch_size, 1), \
cnode.get_group_ins_one_hot(self.max_part_per_parent).repeat(batch_size, 1)], dim=1)
net = F.leaky_relu(self.mlp1(net))
net = F.leaky_relu(self.mlp2(net))
self.decode(cnode, net, leaf_feats)
def forward(self, node, z):
batch_size = z.shape[0]
# compute part-tree subtree features
self.template_encoder(node)
# condition z on the root template feature
feat = torch.cat([z, \
node.get_semantic_one_hot().repeat(batch_size, 1), \
node.template_feature.repeat(batch_size, 1), \
node.get_group_ins_one_hot(self.max_part_per_parent).repeat(batch_size, 1)], dim=1)
feat = F.leaky_relu(self.mlp1(feat))
feat = F.leaky_relu(self.mlp2(feat))
# recursively decode node features until leaf parts
leaf_feats = [None] * node.leaf_cnt
self.decode(node, feat, leaf_feats)
leaf_feats = torch.cat(leaf_feats, dim=1)
# decode leaf feats to leaf pcs
pcs = self.part_decoder(leaf_feats.view(batch_size * node.leaf_cnt, -1), self.base_pc).view(batch_size, node.leaf_cnt, -1, 3)
return pcs