forked from haomo-ai/SuperFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_iou_split.py
173 lines (140 loc) · 7.44 KB
/
evaluate_iou_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import tqdm
import torch
from data.dataset_front import semantic_dataset
from data.const import NUM_CLASSES
from model_front import get_model
def onehot_encoding(logits, dim=1):
max_idx = torch.argmax(logits, dim, keepdim=True)
one_hot = logits.new_full(logits.shape, 0)
one_hot.scatter_(dim, max_idx, 1)
return one_hot
def get_batch_iou(pred_map, gt_map):
intersects = []
unions = []
with torch.no_grad():
pred_map = pred_map.bool()
gt_map = gt_map.bool()
for i in range(pred_map.shape[1]):
pred = pred_map[:, i]
tgt = gt_map[:, i]
intersect = (pred & tgt).sum().float()
union = (pred | tgt).sum().float()
intersects.append(intersect)
unions.append(union)
return torch.tensor(intersects), torch.tensor(unions)
def eval_iou(model, val_loader):
model.eval()
total_intersects = 0
total_union = 0
total_intersects_split_30_60 = 0
total_union_split_30_60 = 0
total_intersects_split_60_90 = 0
total_union_split_60_90 = 0
with torch.no_grad():
for imgs, trans, rots, intrins, post_trans, post_rots, lidar_data, lidar_mask, car_trans, yaw_pitch_roll, semantic_gt, instance_gt, direction_gt, final_depth_map, final_depth_map_bin_enc, projected_depth in tqdm.tqdm(val_loader):
semantic, embedding, direction, _ = model(imgs.cuda(), trans.cuda(), rots.cuda(), intrins.cuda(),
post_trans.cuda(), post_rots.cuda(), lidar_data.cuda(),
lidar_mask.cuda(), car_trans.cuda(), yaw_pitch_roll.cuda(), final_depth_map_bin_enc.cuda(), projected_depth.cuda())
semantic_gt = semantic_gt.cuda().float()
split = int(semantic_gt.shape[3]/3)
intersects, union = get_batch_iou(
onehot_encoding(semantic[:,:,:,:split]), semantic_gt[:,:,:,:split])
total_intersects += intersects
total_union += union
intersects, union = get_batch_iou(
onehot_encoding(semantic[:,:,:,split:2*split]), semantic_gt[:,:,:,split:2*split])
total_intersects_split_30_60 += intersects
total_union_split_30_60 += union
intersects, union = get_batch_iou(
onehot_encoding(semantic[:,:,:,2*split:]), semantic_gt[:,:,:,2*split:])
total_intersects_split_60_90 += intersects
total_union_split_60_90 += union
return total_intersects / (total_union + 1e-7), total_intersects_split_30_60 / (total_union_split_30_60 + 1e-7), total_intersects_split_60_90 / (total_union_split_60_90 + 1e-7)
def main(args):
data_conf = {
'num_channels': NUM_CLASSES + 1,
'image_size': args.image_size,
'xbound': args.xbound,
'ybound': args.ybound,
'zbound': args.zbound,
'dbound': args.dbound,
'thickness': args.thickness,
'angle_class': args.angle_class,
'depth_image_size': args.depth_image_size,
}
train_loader, val_loader = semantic_dataset(
args.version, args.dataroot, data_conf, args.bsz, args.nworkers, depth_downsample_factor=args.depth_downsample_factor, depth_sup=args.depth_sup, use_depth_enc=args.use_depth_enc, use_depth_enc_bin=args.use_depth_enc_bin, add_depth_channel=args.add_depth_channel,use_lidar_10=args.use_lidar_10)
model = get_model(args.model, data_conf, args.instance_seg, args.embedding_dim,
args.direction_pred, args.angle_class, downsample=args.depth_downsample_factor, use_depth_enc=args.use_depth_enc, pretrained=args.pretrained, add_depth_channel=args.add_depth_channel,add_fuser=args.add_fuser)
if args.model == 'HDMapNet_fusion' or args.model == 'HDMapNet_cam':
model.load_state_dict(torch.load(args.modelf), strict=False)
else:
checkpoint = torch.load(args.modelf)
model.load_state_dict(checkpoint['state_dict'])
model.cuda()
iou_front, iou_back, iou_60_90 = eval_iou(model, val_loader)
print("iou_0_30: ", iou_front)
print("iou_30_60: ", iou_back)
print("iou_60_90: ", iou_60_90)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# nuScenes config
parser.add_argument('--dataroot', type=str,
default='/path/to/nuScenes/')
parser.add_argument('--version', type=str, default='v1.0-trainval',
choices=['v1.0-trainval', 'v1.0-mini'])
# model config
parser.add_argument("--model", type=str, default='SuperFusion')
# training config
parser.add_argument("--bsz", type=int, default=4)
parser.add_argument("--nworkers", type=int, default=10)
parser.add_argument('--modelf', type=str, default=None)
# data config
parser.add_argument("--thickness", type=int, default=5)
parser.add_argument("--image_size", nargs=2, type=int, default=[256, 704])
parser.add_argument("--xbound", nargs=3, type=float,
default=[-90.0, 90.0, 0.15])
parser.add_argument("--ybound", nargs=3, type=float,
default=[-15.0, 15.0, 0.15])
parser.add_argument("--zbound", nargs=3, type=float,
default=[-10.0, 10.0, 20.0])
parser.add_argument("--dbound", nargs=3, type=float,
default=[2.0, 90.0, 1.0])
# embedding config
parser.add_argument('--instance_seg', action='store_true')
parser.add_argument("--embedding_dim", type=int, default=16)
parser.add_argument("--delta_v", type=float, default=0.5)
parser.add_argument("--delta_d", type=float, default=3.0)
# direction config
parser.add_argument('--direction_pred', action='store_true')
parser.add_argument('--angle_class', type=int, default=36)
parser.add_argument('--lidar_cut_x', action='store_true')
parser.add_argument("--TOP_X_MIN", type=int, default=-20)
parser.add_argument("--TOP_X_MAX", type=int, default=20)
parser.add_argument("--camC", type=int, default=64)
parser.add_argument("--lidarC", type=int, default=128)
parser.add_argument("--crossC", type=int, default=128)
parser.add_argument("--num_heads", type=int, default=1)
parser.add_argument('--cross_atten', action='store_true')
parser.add_argument('--cross_conv', action='store_true')
parser.add_argument('--add_bn', action='store_true')
parser.add_argument('--pos_emd', action='store_true')
parser.add_argument('--pos_emd_img', action='store_true')
parser.add_argument('--lidar_feature_trans', action='store_true')
parser.add_argument("--depth_downsample_factor", type=int, default=4)
parser.add_argument('--depth_sup', action='store_true')
parser.add_argument("--depth_image_size", nargs=2, type=int, default=[256, 704])
parser.add_argument('--lidar_pred', action='store_true')
parser.add_argument('--use_cross', action='store_true')
parser.add_argument('--add_fuser', action='store_true')
parser.add_argument('--add_fuser2', action='store_true')
parser.add_argument('--use_depth_enc', action='store_true')
parser.add_argument('--add_depth_channel', action='store_true')
parser.add_argument('--use_depth_enc_bin', action='store_true')
parser.add_argument('--add_fuser_AlignFA', action='store_true')
parser.add_argument('--add_fuser_AlignFAnew', action='store_true')
parser.add_argument('--use_lidar_10', action='store_true')
parser.add_argument('--pretrained', action='store_true')
args = parser.parse_args()
main(args)