forked from IrisRainbowNeko/genshin_auto_fish
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mf.py
178 lines (156 loc) · 5.74 KB
/
train_mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from fisher.agent import DQN
from fisher.models import FishNet, MoveFishNet
from fisher.environment import *
import torch
import argparse
import os
import keyboard
import winsound
from loguru import logger
from fisher.predictor import *
from yolox.exp import get_exp
def make_parser():
parser = argparse.ArgumentParser("YOLOX Demo!")
parser.add_argument("demo", default="image", help="demo type, eg. image, video and webcam")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
parser.add_argument("--path", default="./assets/dog.jpg", help="path to images or video")
# exp file
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your experiment description file",
)
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument(
"--device",
default="cpu",
type=str,
help="device to run our model, can either be cpu or gpu",
)
parser.add_argument("--conf", default=0.3, type=float, help="test conf")
parser.add_argument("--nms", default=0.3, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision evaluating.",
)
parser.add_argument(
"--legacy",
dest="legacy",
default=False,
action="store_true",
help="To be compatible with older versions",
)
parser.add_argument(
"--fuse",
dest="fuse",
default=False,
action="store_true",
help="Fuse conv and bn for testing.",
)
parser.add_argument(
"--trt",
dest="trt",
default=False,
action="store_true",
help="Using TensorRT model for testing.",
)
# DQN args
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--n_states', default=8, type=int)
parser.add_argument('--n_actions', default=3, type=int)
parser.add_argument('--n_episode', default=400, type=int)
parser.add_argument('--save_dir', default='./output', type=str)
parser.add_argument('--resume', default=None, type=str)
return parser
def get_predictor(exp, args):
if not args.experiment_name:
args.experiment_name = exp.exp_name
if args.trt:
args.device = "gpu"
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model()
if args.device == "gpu":
model.cuda()
if args.fp16:
model.half() # to FP16
model.eval()
if not args.trt:
if args.ckpt is None:
ckpt_file = os.path.join(file_name, "best_ckpt.pth")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint")
ckpt = torch.load(ckpt_file, map_location="cpu")
# load the model state dict
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if args.trt:
assert not args.fuse, "TensorRT model is not support model fusing!"
if args.ckpt is None:
trt_file = os.path.join(file_name, "model_trt.pth")
else:
trt_file = args.ckpt
assert os.path.exists(
trt_file
), "TensorRT model is not found!\n Run python3 tools/trt.py first!"
model.head.decode_in_inference = False
decoder = model.head.decode_outputs
logger.info("Using TensorRT to inference")
else:
trt_file = None
decoder = None
return Predictor(model, exp, FISH_CLASSES, trt_file, decoder, args.device, args.fp16, args.legacy)
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
predictor = get_predictor(exp, args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
net = MoveFishNet(in_ch=args.n_states, out_ch=args.n_actions)
if args.resume:
net.load_state_dict(torch.load(args.resume))
agent = DQN(net, args.batch_size, args.n_states, args.n_actions, memory_capacity=1000, reg=True)
env = FishMove(predictor)
#python train_mf.py image -f yolox/exp/yolox_tiny_fish.py -c weights/best_tiny3.pth --conf 0.25 --nms 0.45 --tsize 640 --device gpu
if __name__ == '__main__':
# Start training
print("\nCollecting experience...")
net.train()
for i_episode in range(args.n_episode):
winsound.Beep(500, 500)
keyboard.wait('r')
# play 400 episodes of cartpole game
s = env.reset()
ep_r = 0
while True:
# take action based on the current state
a = agent.choose_action(s)
# obtain the reward and next state and some other information
s_, r, done = env.step(a)
# store the transitions of states
agent.store_transition(s, a, r, s_, int(done))
ep_r += r
# if the experience repaly buffer is filled, DQN begins to learn or update
# its parameters.
if agent.memory_counter > agent.memory_capacity:
agent.train_step()
if done:
print('Ep: ', i_episode, ' |', 'Ep_r: ', round(ep_r, 2))
if done:
# if game is over, then skip the while loop.
break
# use next state to update the current state.
s = s_
torch.save(net.state_dict(), os.path.join(args.save_dir, f'fish_move_net_{i_episode}.pth'))