Simple combinatorics in JavaScript
js-combinatorics
has gone ES2015 since version 1.
- native iterator instead of custom
- module.
import
instead ofrequire
. BigInt
where possible
APIs will change accordingly. Old versions are available in the version0
branch.
Check swift-combinatorics. More naturally implemented with generics and protocol.
import * as $C from 'combinatorics.js';
let it = new $C.Combination('abcdefgh', 4);
for (const elem of it) {
console.log(elem) // ['a', 'b', 'c', 'd'] ... ['a', 'd', 'e', 'f']
}
load everything…
import * as Combinatorics from 'combinatorics.js';
or just objects you want.
import {Combination, Permutation} from 'combinatorics.js';
You don't even have to install if you import
from CDNs.
import * as $C from 'https://cdn.jsdelivr.net/npm/[email protected]/combinatorics.min.js';
Since this is an ES6 module, type="module"
is required the <script>
tags. of your HTML files. But you can make it globally available as follows.
<script type="module">
import * as $C from 'combinatorics.js';
window.Combinatorics = $C;
</script>
<script>
// now you can access Combinatorics
let c = new Combinatorics.Combination('abcdefgh', 4);
</script>
- from RunKit example
require=require("esm")(module);
var Combinatorics=require("js-combinatorics");
- REPL
% node -r esm
Welcome to Node.js v14.5.0.
Type ".help" for more information.
> import * as $C from './combinatorics.js'
undefined
> $C
[Module] {
BaseN: [Function: BaseN],
CartesianProduct: [Function: CartesianProduct],
Combination: [Function: Combination],
Permutation: [Function: Permutation],
PowerSet: [Function: PowerSet],
combination: [Function: combination],
factoradic: [Function: factoradic],
factorial: [Function: factorial],
permutation: [Function: permutation],
version: '1.1.1'
}
> [...new $C.Permutation('abcd')]
[
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
]
>
Self-explanatory, are they not?
import {permutation, combination, factorial, factoradic} from 'combinatorics.js';
permutation(24, 12); // 1295295050649600
permutation(26, 13); // 64764752532480000n
combination(56, 28); // 7648690600760440
combination(58, 29); // 30067266499541040n
factorial(18); // 6402373705728000
factorial(19); // 121645100408832000n
factoradic(6402373705727999); // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
factoradic(121645100408831999n) // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
The arithmetic functions above accept both Number
and BigInt
(if supported). Return answers in Number
if it is small enough to fit within Number.MAX_SAFE_INTEGER
or BigInt
otherwise.
The module comes with Permutation
, Combination
, PowerSet
, BaseN
, and CartesianProduct
. You can individually import
them or all of them via import *
import * as $C from 'combinatorics.js';
You construct an iterable object by giving a seed iterable and options. in the example below, 'abcdefgh'
is the seed and 4
is the size of the element.
let it = new $C.Combination('abcdefgh', 4);
Once constructed, you can iterate via for … of
statement or turn it into an array via [...]
construct.
[...it]; /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'c', 'e' ], [ 'a', 'b', 'c', 'f' ],
[ 'a', 'b', 'c', 'h' ], [ 'a', 'b', 'd', 'c' ], [ 'a', 'b', 'd', 'g' ],
[ 'a', 'b', 'd', 'e' ], [ 'a', 'b', 'd', 'h' ], [ 'a', 'b', 'e', 'd' ],
[ 'a', 'b', 'f', 'd' ], [ 'a', 'b', 'e', 'c' ], [ 'a', 'b', 'e', 'f' ],
[ 'a', 'b', 'e', 'g' ], [ 'a', 'b', 'f', 'e' ], [ 'a', 'b', 'e', 'h' ],
[ 'a', 'b', 'f', 'h' ], [ 'a', 'b', 'g', 'f' ], [ 'a', 'c', 'b', 'f' ],
[ 'a', 'b', 'f', 'g' ], [ 'a', 'b', 'g', 'c' ], [ 'a', 'b', 'g', 'd' ],
[ 'a', 'b', 'g', 'h' ], [ 'a', 'b', 'g', 'e' ], [ 'a', 'b', 'h', 'c' ],
[ 'a', 'b', 'h', 'e' ], [ 'a', 'c', 'b', 'g' ], [ 'a', 'b', 'h', 'd' ],
[ 'a', 'b', 'h', 'f' ], [ 'a', 'b', 'h', 'g' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'h' ], [ 'a', 'c', 'f', 'e' ],
[ 'a', 'd', 'b', 'h' ], [ 'a', 'c', 'b', 'h' ], [ 'a', 'c', 'd', 'e' ],
[ 'a', 'c', 'd', 'f' ], [ 'a', 'c', 'e', 'b' ], [ 'a', 'c', 'd', 'g' ],
[ 'a', 'c', 'e', 'd' ], [ 'a', 'c', 'e', 'g' ], [ 'a', 'c', 'f', 'g' ],
[ 'a', 'c', 'e', 'f' ], [ 'a', 'c', 'e', 'h' ], [ 'a', 'c', 'f', 'b' ],
[ 'a', 'c', 'f', 'h' ], [ 'a', 'c', 'f', 'd' ], [ 'a', 'c', 'g', 'd' ],
[ 'a', 'c', 'h', 'b' ], [ 'a', 'd', 'c', 'b' ], [ 'a', 'c', 'g', 'b' ],
[ 'a', 'c', 'g', 'e' ], [ 'a', 'c', 'g', 'f' ], [ 'a', 'c', 'h', 'd' ],
[ 'a', 'c', 'g', 'h' ], [ 'a', 'c', 'h', 'e' ], [ 'a', 'c', 'h', 'g' ],
[ 'a', 'd', 'c', 'f' ], [ 'a', 'c', 'h', 'f' ], [ 'a', 'd', 'b', 'c' ],
[ 'a', 'd', 'b', 'e' ], [ 'a', 'd', 'e', 'c' ], [ 'a', 'd', 'b', 'f' ],
[ 'a', 'd', 'f', 'h' ], [ 'a', 'e', 'c', 'b' ], [ 'a', 'f', 'c', 'g' ],
[ 'a', 'd', 'c', 'e' ], [ 'a', 'd', 'c', 'g' ], [ 'a', 'd', 'c', 'h' ],
[ 'a', 'd', 'e', 'f' ]
] */
The object has .length
so you don't have to iterate to count the elements.
it.length; // 70
The object also has .nth(n)
method so you can random-access each element. This is the equivalent of subscript in Array
.
it.nth(0); // [ 'a', 'b', 'c', 'd' ];
it.nth(69); // [ 'a', 'd', 'c', 'h' ];
nth()
accepts both Number
and BigInt
.
it.nth(69n); // [ 'a', 'd', 'c', 'h' ];
nth()
also accepts negative indexes. In which case n
is (-n)th
element from .length
.
it.nth(-1); // [ 'a', 'd', 'c', 'h' ]
it.nth(-70); // [ 'a', 'b', 'c', 'd' ]
Occasionally you need BigInt
to access elements beyond Number.MAX_SAFE_INTEGER
.
it = new $C.Permutation('abcdefghijklmnopqrstuvwxyz');
it.length; // 403291461126605635584000000n
You can still access elements before Number.MAX_SAFE_INTEGER
in Number
.
it.nth(0); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x',
'y', 'z'
] */
it.nth(9007199254740990); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'v', 'w'
] */
But how are you goint to acccess elements beyond that? Just use BigInt
.
it.nth(9007199254740991n); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'w', 'v'
] */
it.nth(it.length - 1n); /* [
'z', 'y', 'x', 'w', 'v', 'u',
't', 's', 'r', 'q', 'p', 'o',
'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c',
'b', 'a'
] */
You can tell if you need BigInt
via .isBig
.
new $C.Permutation('0123456789').isBig; // false
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isBig; // true
You can also check if it is safe on your platform via .isSafe
.
// true if BigInt is supported
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isSafe;
This module still runs on platforms without BigInt
(notably Safari 13 or below), but its operation is no longer guaranteed if .isSafe
is false.
An iterable which permutes a given iterable.
new Permutation(seed, size)
seed
: the seed iterable.[...seed]
becomes the seed array.size
: the number of elements in the iterated element. defaults toseed.length
import {Permutation} from 'combinatorics.js';
let it = new Permutation('abcd'); // size 4 is assumed4
it.length; // 24
[...it]; /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
] */
it = new Permutation('abcdefghijklmnopqrstuvwxyz0123456789');
it.length; // 371993326789901217467999448150835200000000n
it.nth(371993326789901217467999448150835199999999n); /* [
'9', '8', '7', '6', '5', '4', '3',
'2', '1', '0', 'z', 'y', 'x', 'w',
'v', 'u', 't', 's', 'r', 'q', 'p',
'o', 'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c', 'b',
'a'
] */
An iterable which emits a combination of a given iterable.
new Combination(seed, size)
seed
: the seed iterable.size
: the number of elements in the iterated element.
import {Combination} from 'combinatorics.js';
let it = new Combination('abcd', 2);
it.length; // 6
[...it]; /* [
[ 'a', 'b' ],
[ 'a', 'c' ],
[ 'a', 'd' ],
[ 'b', 'c' ],
[ 'b', 'd' ],
[ 'c', 'd' ]
] */
let a100 = Array(100).fill(0).map((v,i)=>i); // [0, 1, ...99]
it = new Combination(a100, 50);
it.length; // 100891344545564193334812497256n
it.nth(100891344545564193334812497255n); /* [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
38, 76, 36, 41, 40, 81, 84, 62, 87, 83, 43,
91, 88, 33, 34, 35, 39
] */
An iterable which emits each element of its power set.
new PowerSet(seed)
seed
: the seed iterable.
import {PowerSet} from 'combinatorics.js';
let it = new PowerSet('abc');
it.length; // 8
[...it]; /* [
[],
[ 'a' ],
[ 'b' ],
[ 'a', 'b' ],
[ 'c' ],
[ 'a', 'c' ],
[ 'b', 'c' ],
[ 'a', 'b', 'c' ]
] */
it = new PowerSet(
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a',
'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', '+',
'/'
] */
An iterable which emits all numbers in the given system.
new BaseN(seed, size)
seed
: the seed iterable whose elements represent digits.size
: the number of digits
import {BaseN} from 'combinatorics.js';
let it = new BaseN('abc', 3);
it.length; // 27
[...it]; /* [
[ 'a', 'a', 'a' ], [ 'b', 'a', 'a' ],
[ 'c', 'a', 'a' ], [ 'a', 'b', 'a' ],
[ 'b', 'b', 'a' ], [ 'c', 'b', 'a' ],
[ 'a', 'c', 'a' ], [ 'b', 'c', 'a' ],
[ 'c', 'c', 'a' ], [ 'a', 'a', 'b' ],
[ 'b', 'a', 'b' ], [ 'c', 'a', 'b' ],
[ 'a', 'b', 'b' ], [ 'b', 'b', 'b' ],
[ 'c', 'b', 'b' ], [ 'a', 'c', 'b' ],
[ 'b', 'c', 'b' ], [ 'c', 'c', 'b' ],
[ 'a', 'a', 'c' ], [ 'b', 'a', 'c' ],
[ 'c', 'a', 'c' ], [ 'a', 'b', 'c' ],
[ 'b', 'b', 'c' ], [ 'c', 'b', 'c' ],
[ 'a', 'c', 'c' ], [ 'b', 'c', 'c' ],
[ 'c', 'c', 'c' ]
] */
it = BaseN('0123456789abcdef', 16);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
A cartesian product of given sets.
new CartesianProduct(...args)
args
: iterables that represent sets
import {CartesianProduct} from 'combinatorics.js';
let it = new CartesianProduct('012','abc','xyz');
it.length; // 27
[...it]; /* [
[ '0', 'a', 'x' ], [ '1', 'a', 'x' ],
[ '2', 'a', 'x' ], [ '0', 'b', 'x' ],
[ '1', 'b', 'x' ], [ '2', 'b', 'x' ],
[ '0', 'c', 'x' ], [ '1', 'c', 'x' ],
[ '2', 'c', 'x' ], [ '0', 'a', 'y' ],
[ '1', 'a', 'y' ], [ '2', 'a', 'y' ],
[ '0', 'b', 'y' ], [ '1', 'b', 'y' ],
[ '2', 'b', 'y' ], [ '0', 'c', 'y' ],
[ '1', 'c', 'y' ], [ '2', 'c', 'y' ],
[ '0', 'a', 'z' ], [ '1', 'a', 'z' ],
[ '2', 'a', 'z' ], [ '0', 'b', 'z' ],
[ '1', 'b', 'z' ], [ '2', 'b', 'z' ],
[ '0', 'c', 'z' ], [ '1', 'c', 'z' ],
[ '2', 'c', 'z' ]
] */
Since the number of arguments to CartesianProduct
is variable, it is sometimes helpful to give a single array with all arguments. But you cannot new ctor.apply(null, args)
this case. To mitigate that, you can use .vmake()
.
let a16 = Array(16).fill('0123456789abcdef');
it = CartesianProduct.vmake(a16);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
bigCombination
is gone because all classes now can handle big -- combinatorially big! -- cases thanks to BigInt support getting standard. Safari 13 and below is a major exception but BigInt is coming to Safari 14 and up.
permutationCombination
is gone because the name is misleading and it is now trivially easy to reconstruct as follow:
class permutationCombination {
constructor(seed) {
this.seed = [...seed];
}
[Symbol.iterator]() {
return function*(it){
for (let i = 1, l = it.length; i <= l; i++) {
yield* new Permutation(it, i);
}
}(this.seed);
}
}
js-combinatorics
is now natively iterable. Meaning its custom iterators are gone -- with its methods like.map
and.filter
. JS iterators are very minimalistic with only[...]
andfor ... of
. But don't worry. There are several ways to make those functional methods back again.
For instance, You can use js-xiterable like so:
import {xiterable as $X} from
'https://cdn.jsdelivr.net/npm/[email protected]/xiterable.min.js';
import {Permutation} from 'combinatorics.js';
let it = new Permutation('abcd');
let words = $X(it).map(v=>v.join(''))
for (const word of words)) console.log(word)
/*
abcd
abdc
...
dcab
dcba
*/