Simple combinatorics in JavaScript
Now that Internet Explorer has officially retired, It is safe to assume BigInt
is available in every JavaScript environment. From version 2.0 this module goes fully BigInt. While integer arguments can still be either number
or bigint
, all integer values that can be bigint
are always bigint
, whereas previous versions may return number
when the value <= Number.MAX_SAFE_INTEGER
. It is not only more combinatorically natural, but also makes debugging easier especially on TypeScript.
Check swift-combinatorics. More naturally implemented with generics and protocol.
import * as $C from './combinatorics.js';
let it = new $C.Combination('abcdefgh', 4);
for (const elem of it) {
console.log(elem) // ['a', 'b', 'c', 'd'] ... ['e', 'f', 'g', 'h']
}
load everything…
import * as Combinatorics from './combinatorics.js';
or just objects you want.
import { Combination, Permutation } from './combinatorics.js';
You don't even have to install if you import
from CDNs.
import * as $C from 'https://cdn.jsdelivr.net/npm/[email protected]/combinatorics.min.js';
Since this is an ES6 module, type="module"
is required the <script>
tags. of your HTML files. But you can make it globally available as follows.
<script type="module">
import * as $C from 'combinatorics.js';
window.Combinatorics = $C;
</script>
<script>
// now you can access Combinatorics
let c = new Combinatorics.Combination('abcdefgh', 4);
</script>
% node
Welcome to Node.js v16.15.0.
Type ".help" for more information.
> const $C = await import('js-combinatorics')
undefined
> $C
[Module: null prototype] {
BaseN: [class BaseN extends _CBase],
CartesianProduct: [class CartesianProduct extends _CBase],
Combination: [class Combination extends _CBase],
Permutation: [class Permutation extends _CBase],
PowerSet: [class PowerSet extends _CBase],
combinadic: [Function: combinadic],
combination: [Function: combination],
factoradic: [Function: factoradic],
factorial: [Function: factorial],
permutation: [Function: permutation],
randomInteger: [Function: randomInteger],
version: '2.0.0'
}
> [...new $C.Permutation('abcd')]
[
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
]
>
./combinatorics.js
is an ECMAScript module but if you still need a UMD or commonjs version, they are available as ./umd/combinatorics.js
and ./commonjs/combinatorics.js
respectively.
Self-explanatory, are they not?
import { permutation, combination, factorial, randomInteger } from './combinatorics.js';
permutation(24, 12); // 1295295050649600n
permutation(26, 13); // 64764752532480000n
combination(56, 28); // 7648690600760440n
combination(58, 29); // 30067266499541040n
factorial(18); // 6402373705728000n
factorial(19); // 121645100408832000n
randomInteger(6402373705727999); // random n [0,6402373705728000)
randomInteger(121645100408832000n); // ramdom n [0n, 121645100408832000n)
The arithmetic functions above accept both Number
and BigInt
(if supported). Return answers always in BigInt
.
They need a little more explanation.
import { factoradic, combinadic } from './combinatorics.js';
factoradic(6402373705727999); // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
factoradic(121645100408831999n); // [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
const c16_8 = combinadic(16, 8);
c16_8(0); // [ 0, 1, 2, 3, 4, 5, 6, 7]
c16_8(12870); // [ 8, 9, 10, 11, 12, 13, 14, 15]
const c58_29 = combinadic(58, 29);
c58_29(0); /* [
0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28
] */
c58_29(30067266499541039n); /* [
29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57
] */
factoradic(n)
returns the factoradic representation of n
. For an array ary
with n
elements, you can get its n
th permutation by picking ary[i]
for each i
in the factoradic.
Unlike other arithmetic functions, combinadic()
returns a function which returns m
th combinadic digit of n C k
. For an array ary
with n
elements, you can get its m
th combination by picking ary[i]
for each i
in the combinadic.
The module comes with Permutation
, Combination
, PowerSet
, BaseN
, and CartesianProduct
. You can individually import
them or all of them via import *
import * as $C from 'combinatorics.js';
You construct an iterable object by giving a seed iterable and options. in the example below, 'abcdefgh'
is the seed and 4
is the size of the element.
let it = new $C.Combination('abcdefgh', 4);
if you hate new
, you can use Klass.of
where Klass
is one of the classes this module offers.
let it = $C.Combination.of('abcdefgh', 4);
Once constructed, you can iterate via for … of
statement or turn it into an array via [...]
construct.
[...it]; /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'c', 'e' ], [ 'a', 'b', 'c', 'f' ],
[ 'a', 'b', 'c', 'g' ], [ 'a', 'b', 'c', 'h' ], [ 'a', 'b', 'd', 'e' ],
[ 'a', 'b', 'd', 'f' ], [ 'a', 'b', 'd', 'g' ], [ 'a', 'b', 'd', 'h' ],
[ 'a', 'b', 'e', 'f' ], [ 'a', 'b', 'e', 'g' ], [ 'a', 'b', 'e', 'h' ],
[ 'a', 'b', 'f', 'g' ], [ 'a', 'b', 'f', 'h' ], [ 'a', 'b', 'g', 'h' ],
[ 'a', 'c', 'd', 'e' ], [ 'a', 'c', 'd', 'f' ], [ 'a', 'c', 'd', 'g' ],
[ 'a', 'c', 'd', 'h' ], [ 'a', 'c', 'e', 'f' ], [ 'a', 'c', 'e', 'g' ],
[ 'a', 'c', 'e', 'h' ], [ 'a', 'c', 'f', 'g' ], [ 'a', 'c', 'f', 'h' ],
[ 'a', 'c', 'g', 'h' ], [ 'a', 'd', 'e', 'f' ], [ 'a', 'd', 'e', 'g' ],
[ 'a', 'd', 'e', 'h' ], [ 'a', 'd', 'f', 'g' ], [ 'a', 'd', 'f', 'h' ],
[ 'a', 'd', 'g', 'h' ], [ 'a', 'e', 'f', 'g' ], [ 'a', 'e', 'f', 'h' ],
[ 'a', 'e', 'g', 'h' ], [ 'a', 'f', 'g', 'h' ], [ 'b', 'c', 'd', 'e' ],
[ 'b', 'c', 'd', 'f' ], [ 'b', 'c', 'd', 'g' ], [ 'b', 'c', 'd', 'h' ],
[ 'b', 'c', 'e', 'f' ], [ 'b', 'c', 'e', 'g' ], [ 'b', 'c', 'e', 'h' ],
[ 'b', 'c', 'f', 'g' ], [ 'b', 'c', 'f', 'h' ], [ 'b', 'c', 'g', 'h' ],
[ 'b', 'd', 'e', 'f' ], [ 'b', 'd', 'e', 'g' ], [ 'b', 'd', 'e', 'h' ],
[ 'b', 'd', 'f', 'g' ], [ 'b', 'd', 'f', 'h' ], [ 'b', 'd', 'g', 'h' ],
[ 'b', 'e', 'f', 'g' ], [ 'b', 'e', 'f', 'h' ], [ 'b', 'e', 'g', 'h' ],
[ 'b', 'f', 'g', 'h' ], [ 'c', 'd', 'e', 'f' ], [ 'c', 'd', 'e', 'g' ],
[ 'c', 'd', 'e', 'h' ], [ 'c', 'd', 'f', 'g' ], [ 'c', 'd', 'f', 'h' ],
[ 'c', 'd', 'g', 'h' ], [ 'c', 'e', 'f', 'g' ], [ 'c', 'e', 'f', 'h' ],
[ 'c', 'e', 'g', 'h' ], [ 'c', 'f', 'g', 'h' ], [ 'd', 'e', 'f', 'g' ],
[ 'd', 'e', 'f', 'h' ], [ 'd', 'e', 'g', 'h' ], [ 'd', 'f', 'g', 'h' ],
[ 'e', 'f', 'g', 'h' ]
] */
The object has .length
so you don't have to iterate to count the elements. Note the value is in bigint
so you need to convert to number
.
it.length; // 70n
And the object has .nth(n)
method so you can random-access each element. This is the equivalent of subscript in Array
.
it.nth(0); // [ 'a', 'b', 'c', 'd' ];
it.nth(69); // [ 'a', 'd', 'c', 'h' ];
nth()
accepts both Number
and BigInt
.
it.nth(69n); // [ 'a', 'd', 'c', 'h' ];
nth()
also accepts negative indexes. In which case n
is (-n)th
element from .length
.
it.nth(-1); // [ 'a', 'd', 'c', 'h' ]
it.nth(-70); // [ 'a', 'b', 'c', 'd' ]
And .sample()
picks random element, which is defined as .nth(randomInteger(.length))
.
it.sample() // one of ['a', 'b', 'c', 'd'] ... ['a', 'd', 'e', 'f']
Occasionally you need BigInt
to access elements beyond Number.MAX_SAFE_INTEGER
.
it = new $C.Permutation('abcdefghijklmnopqrstuvwxyz');
it.length; // 403291461126605635584000000n
You can still access elements before Number.MAX_SAFE_INTEGER
in Number
.
it.nth(0); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x',
'y', 'z'
] */
it.nth(9007199254740990); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'v', 'w'
] */
But how are you goint to acccess elements beyond that? Just use BigInt
.
it.nth(9007199254740991n); /* [
'a', 'b', 'c', 'd', 'e', 'f',
'g', 'i', 'p', 'n', 'r', 'z',
'm', 'h', 'y', 'x', 'u', 't',
'l', 'j', 'k', 'q', 's', 'o',
'w', 'v'
] */
it.nth(it.length - 1n); /* [
'z', 'y', 'x', 'w', 'v', 'u',
't', 's', 'r', 'q', 'p', 'o',
'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c',
'b', 'a'
] */
You can tell if you need BigInt
via .isBig
. Note .length
is always bigint
from version 2.0 so you may not need this method any more. So it is now deprecated.
new $C.Permutation('0123456789').isBig; // false
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isBig; // true
You can also check if it is safe on your platform via .isSafe
. It is now deprecated for the same reason as .isBig
.
new $C.Permutation('abcdefghijklmnopqrstuvwxyz').isSafe; // always true
This module still runs on platforms without BigInt
(notably Safari 13 or below), but its operation is no longer guaranteed if .isSafe
is false.
An iterable which permutes a given iterable.
new Permutation(seed, size)
seed
: the seed iterable.[...seed]
becomes the seed array.size
: the number of elements in the iterated element. defaults toseed.length
import {Permutation} from './combinatorics.js';
let it = new Permutation('abcd'); // size 4 is assumed
it.length; // 24n
[...it]; /* [
[ 'a', 'b', 'c', 'd' ], [ 'a', 'b', 'd', 'c' ],
[ 'a', 'c', 'b', 'd' ], [ 'a', 'c', 'd', 'b' ],
[ 'a', 'd', 'b', 'c' ], [ 'a', 'd', 'c', 'b' ],
[ 'b', 'a', 'c', 'd' ], [ 'b', 'a', 'd', 'c' ],
[ 'b', 'c', 'a', 'd' ], [ 'b', 'c', 'd', 'a' ],
[ 'b', 'd', 'a', 'c' ], [ 'b', 'd', 'c', 'a' ],
[ 'c', 'a', 'b', 'd' ], [ 'c', 'a', 'd', 'b' ],
[ 'c', 'b', 'a', 'd' ], [ 'c', 'b', 'd', 'a' ],
[ 'c', 'd', 'a', 'b' ], [ 'c', 'd', 'b', 'a' ],
[ 'd', 'a', 'b', 'c' ], [ 'd', 'a', 'c', 'b' ],
[ 'd', 'b', 'a', 'c' ], [ 'd', 'b', 'c', 'a' ],
[ 'd', 'c', 'a', 'b' ], [ 'd', 'c', 'b', 'a' ]
] */
it = new Permutation('abcdefghijklmnopqrstuvwxyz0123456789');
it.length; // 371993326789901217467999448150835200000000n
it.nth(371993326789901217467999448150835199999999n); /* [
'9', '8', '7', '6', '5', '4', '3',
'2', '1', '0', 'z', 'y', 'x', 'w',
'v', 'u', 't', 's', 'r', 'q', 'p',
'o', 'n', 'm', 'l', 'k', 'j', 'i',
'h', 'g', 'f', 'e', 'd', 'c', 'b',
'a'
] */
Making a permutation of the iterable then taking its sample is functionally the same as Fisher–Yates shuffle of the iterable. Instead of shuffling the deck, it make all possible cases available and let you pick one.
it.sample(); // something between ['a','b', ... '9'] and ['9','8',....'a']
It is in fact a little better because .sample()
only needs one random number (between 0 and .length - 1
) while Fisher–Yates needs n
random numbers.
An iterable which emits a combination of a given iterable.
new Combination(seed, size)
seed
: the seed iterable.size
: the number of elements in the iterated element.
import {Combination} from './combinatorics.js';
let it = new Combination('abcd', 2);
it.length; // 6n
[...it]; /* [
[ 'a', 'b' ],
[ 'a', 'c' ],
[ 'a', 'd' ],
[ 'b', 'c' ],
[ 'b', 'd' ],
[ 'c', 'd' ]
] */
let a100 = Array(100).fill(0).map((v,i)=>i); // [0, 1, ...99]
it = new Combination(a100, 50);
it.length; // 100891344545564193334812497256n
it.nth(100891344545564193334812497255n); /* [
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99
] */
An iterable which emits each element of its power set.
new PowerSet(seed)
seed
: the seed iterable.
import {PowerSet} from './combinatorics.js';
let it = new PowerSet('abc');
it.length; // 8n
[...it]; /* [
[],
[ 'a' ],
[ 'b' ],
[ 'a', 'b' ],
[ 'c' ],
[ 'a', 'c' ],
[ 'b', 'c' ],
[ 'a', 'b', 'c' ]
] */
it = new PowerSet(
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a',
'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9', '+',
'/'
] */
An iterable which emits all numbers in the given system.
new BaseN(seed, size)
seed
: the seed iterable whose elements represent digits.size
: the number of digits
import {BaseN} from './combinatorics.js';
let it = new BaseN('abc', 3);
it.length; // 27n
[...it]; /* [
[ 'a', 'a', 'a' ], [ 'b', 'a', 'a' ],
[ 'c', 'a', 'a' ], [ 'a', 'b', 'a' ],
[ 'b', 'b', 'a' ], [ 'c', 'b', 'a' ],
[ 'a', 'c', 'a' ], [ 'b', 'c', 'a' ],
[ 'c', 'c', 'a' ], [ 'a', 'a', 'b' ],
[ 'b', 'a', 'b' ], [ 'c', 'a', 'b' ],
[ 'a', 'b', 'b' ], [ 'b', 'b', 'b' ],
[ 'c', 'b', 'b' ], [ 'a', 'c', 'b' ],
[ 'b', 'c', 'b' ], [ 'c', 'c', 'b' ],
[ 'a', 'a', 'c' ], [ 'b', 'a', 'c' ],
[ 'c', 'a', 'c' ], [ 'a', 'b', 'c' ],
[ 'b', 'b', 'c' ], [ 'c', 'b', 'c' ],
[ 'a', 'c', 'c' ], [ 'b', 'c', 'c' ],
[ 'c', 'c', 'c' ]
] */
it = BaseN('0123456789abcdef', 16);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
A cartesian product of given sets.
new CartesianProduct(...args)
args
: iterables that represent sets
import {CartesianProduct} from './combinatorics.js';
let it = new CartesianProduct('012','abc','xyz');
it.length; // 27n
[...it]; /* [
[ '0', 'a', 'x' ], [ '1', 'a', 'x' ],
[ '2', 'a', 'x' ], [ '0', 'b', 'x' ],
[ '1', 'b', 'x' ], [ '2', 'b', 'x' ],
[ '0', 'c', 'x' ], [ '1', 'c', 'x' ],
[ '2', 'c', 'x' ], [ '0', 'a', 'y' ],
[ '1', 'a', 'y' ], [ '2', 'a', 'y' ],
[ '0', 'b', 'y' ], [ '1', 'b', 'y' ],
[ '2', 'b', 'y' ], [ '0', 'c', 'y' ],
[ '1', 'c', 'y' ], [ '2', 'c', 'y' ],
[ '0', 'a', 'z' ], [ '1', 'a', 'z' ],
[ '2', 'a', 'z' ], [ '0', 'b', 'z' ],
[ '1', 'b', 'z' ], [ '2', 'b', 'z' ],
[ '0', 'c', 'z' ], [ '1', 'c', 'z' ],
[ '2', 'c', 'z' ]
] */
Since the number of arguments to CartesianProduct
is variable, it is sometimes helpful to give a single array with all arguments. But you cannot new ctor.apply(null, args)
this case. To mitigate that, you can use .from()
.
let a16 = Array(16).fill('0123456789abcdef');
it = CartesianProduct.from(a16);
it.length; // 18446744073709551616n
it.nth(18446744073709551615n); /* [
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f',
'f', 'f', 'f', 'f'
] */
js-combinatorics
has gone ES2015 since version 1.
- native iterator instead of custom
- module.
import
instead ofrequire
. BigInt
where possible
And from version 1.2 it is written in TypeScript. combinatorics.js
and combinatorics.d.ts
are compiled from combinatorics.ts
.
APIs will change accordingly. Old versions are available in the version0
branch.
bigCombination
is gone because all classes now can handle big -- combinatorially big! -- cases thanks to BigInt support getting standard. Safari 13 and below is a major exception but BigInt is coming to Safari 14 and up.
permutationCombination
is gone because the name is misleading and it is now trivially easy to reconstruct as follow:
class permutationCombination {
constructor(seed) {
this.seed = [...seed];
}
[Symbol.iterator]() {
return function*(it){
for (let i = 1, l = it.length; i <= l; i++) {
yield* new Permutation(it, i);
}
}(this.seed);
}
}
js-combinatorics
is now natively iterable. Meaning its custom iterators are gone -- with its methods like.map
and.filter
. JS iterators are very minimalistic with only[...]
andfor ... of
. But don't worry. There are several ways to make those functional methods back again.
For instance, You can use js-xiterable like so:
import {xiterable as $X} from
'https://cdn.jsdelivr.net/npm/[email protected]/xiterable.min.js';
import {Permutation} from 'combinatorics.js';
let it = new Permutation('abcd');
let words = $X(it).map(v=>v.join(''))
for (const word of words)) console.log(word)
/*
abcd
abdc
...
dcab
dcba
*/