forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDisplacedMovingAverageRibbon.cs
190 lines (165 loc) · 6.88 KB
/
DisplacedMovingAverageRibbon.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Constructs a displaced moving average ribbon and buys when all are lined up, liquidates when they all line down
/// Ribbons are great for visualizing trends
/// Signals are generated when they all line up in a paricular direction
/// A buy signal is when the values of the indicators are increasing (from slowest to fastest).
/// A sell signal is when the values of the indicators are decreasing (from slowest to fastest).
/// </summary>
public class DisplacedMovingAverageRibbon : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
private IndicatorBase<IndicatorDataPoint>[] _ribbon;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
/// <meta name="tag" content="charting" />
/// <meta name="tag" content="plotting indicators" />
/// <seealso cref="QCAlgorithm.SetStartDate(System.DateTime)"/>
/// <seealso cref="QCAlgorithm.SetEndDate(System.DateTime)"/>
/// <seealso cref="QCAlgorithm.SetCash(decimal)"/>
public override void Initialize()
{
SetStartDate(2009, 01, 01);
SetEndDate(2015, 01, 01);
AddSecurity(SecurityType.Equity, "SPY", Resolution.Daily);
const int count = 6;
const int offset = 5;
const int period = 15;
// define our sma as the base of the ribbon
var sma = new SimpleMovingAverage(period);
_ribbon = Enumerable.Range(0, count).Select(x =>
{
// define our offset to the zero sma, these various offsets will create our 'displaced' ribbon
var delay = new Delay(offset*(x+1));
// define an indicator that takes the output of the sma and pipes it into our delay indicator
var delayedSma = delay.Of(sma);
// register our new 'delayedSma' for automaic updates on a daily resolution
RegisterIndicator(_spy, delayedSma, Resolution.Daily, data => data.Value);
return delayedSma;
}).ToArray();
}
private DateTime _previous;
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars IDictionary object with your stock data</param>
public void OnData(TradeBars data)
{
// wait for our entire ribbon to be ready
if (!_ribbon.All(x => x.IsReady)) return;
// only once per day
if (_previous.Date == Time.Date) return;
Plot("Ribbon", "Price", data[_spy].Price);
Plot("Ribbon", _ribbon);
// check for a buy signal
var values = _ribbon.Select(x => x.Current.Value).ToArray();
var holding = Portfolio[_spy];
if (holding.Quantity <= 0 && IsAscending(values))
{
SetHoldings(_spy, 1.0);
}
else if (holding.Quantity > 0 && IsDescending(values))
{
Liquidate(_spy);
}
_previous = Time;
}
/// <summary>
/// Returns true if the specified values are in ascending order
/// </summary>
private bool IsAscending(IEnumerable<decimal> values)
{
decimal? last = null;
foreach (var val in values)
{
if (last == null)
{
last = val;
continue;
}
if (last.Value < val)
{
return false;
}
last = val;
}
return true;
}
/// <summary>
/// Returns true if the specified values are in descending order
/// </summary>
private bool IsDescending(IEnumerable<decimal> values)
{
decimal? last = null;
foreach (var val in values)
{
if (last == null)
{
last = val;
continue;
}
if (last.Value > val)
{
return false;
}
last = val;
}
return true;
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "7"},
{"Average Win", "19.15%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "16.726%"},
{"Drawdown", "12.500%"},
{"Expectancy", "0"},
{"Net Profit", "153.046%"},
{"Sharpe Ratio", "1.275"},
{"Loss Rate", "0%"},
{"Win Rate", "100%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.075"},
{"Beta", "0.504"},
{"Annual Standard Deviation", "0.128"},
{"Annual Variance", "0.016"},
{"Information Ratio", "-0.091"},
{"Tracking Error", "0.127"},
{"Treynor Ratio", "0.324"},
{"Total Fees", "$46.75"}
};
}
}