forked from excalidraw/excalidraw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.ts
319 lines (284 loc) · 8.46 KB
/
math.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import { Point } from "./types";
import { LINE_CONFIRM_THRESHOLD } from "./constants";
import { ExcalidrawLinearElement } from "./element/types";
export const rotate = (
x1: number,
y1: number,
x2: number,
y2: number,
angle: number,
): [number, number] =>
// 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
// 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
[
(x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
(x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
];
export const rotatePoint = (
point: Point,
center: Point,
angle: number,
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
export const adjustXYWithRotation = (
sides: {
n?: boolean;
e?: boolean;
s?: boolean;
w?: boolean;
},
x: number,
y: number,
angle: number,
deltaX1: number,
deltaY1: number,
deltaX2: number,
deltaY2: number,
): [number, number] => {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
if (sides.e && sides.w) {
x += deltaX1 + deltaX2;
} else if (sides.e) {
x += deltaX1 * (1 + cos);
y += deltaX1 * sin;
x += deltaX2 * (1 - cos);
y += deltaX2 * -sin;
} else if (sides.w) {
x += deltaX1 * (1 - cos);
y += deltaX1 * -sin;
x += deltaX2 * (1 + cos);
y += deltaX2 * sin;
}
if (sides.n && sides.s) {
y += deltaY1 + deltaY2;
} else if (sides.n) {
x += deltaY1 * sin;
y += deltaY1 * (1 - cos);
x += deltaY2 * -sin;
y += deltaY2 * (1 + cos);
} else if (sides.s) {
x += deltaY1 * -sin;
y += deltaY1 * (1 + cos);
x += deltaY2 * sin;
y += deltaY2 * (1 - cos);
}
return [x, y];
};
export const getFlipAdjustment = (
side: "n" | "s" | "w" | "e" | "nw" | "ne" | "sw" | "se",
nextWidth: number,
nextHeight: number,
nextX1: number,
nextY1: number,
nextX2: number,
nextY2: number,
finalX1: number,
finalY1: number,
finalX2: number,
finalY2: number,
needsRotation: boolean,
angle: number,
): [number, number] => {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
let flipDiffX = 0;
let flipDiffY = 0;
if (nextWidth < 0) {
if (side === "e" || side === "ne" || side === "se") {
if (needsRotation) {
flipDiffX += (finalX2 - nextX1) * cos;
flipDiffY += (finalX2 - nextX1) * sin;
} else {
flipDiffX += finalX2 - nextX1;
}
}
if (side === "w" || side === "nw" || side === "sw") {
if (needsRotation) {
flipDiffX += (finalX1 - nextX2) * cos;
flipDiffY += (finalX1 - nextX2) * sin;
} else {
flipDiffX += finalX1 - nextX2;
}
}
}
if (nextHeight < 0) {
if (side === "s" || side === "se" || side === "sw") {
if (needsRotation) {
flipDiffY += (finalY2 - nextY1) * cos;
flipDiffX += (finalY2 - nextY1) * -sin;
} else {
flipDiffY += finalY2 - nextY1;
}
}
if (side === "n" || side === "ne" || side === "nw") {
if (needsRotation) {
flipDiffY += (finalY1 - nextY2) * cos;
flipDiffX += (finalY1 - nextY2) * -sin;
} else {
flipDiffY += finalY1 - nextY2;
}
}
}
return [flipDiffX, flipDiffY];
};
export const getPointOnAPath = (point: Point, path: Point[]) => {
const [px, py] = point;
const [start, ...other] = path;
let [lastX, lastY] = start;
let kLine: number = 0;
let idx: number = 0;
// if any item in the array is true, it means that a point is
// on some segment of a line based path
const retVal = other.some(([x2, y2], i) => {
// we always take a line when dealing with line segments
const x1 = lastX;
const y1 = lastY;
lastX = x2;
lastY = y2;
// if a point is not within the domain of the line segment
// it is not on the line segment
if (px < x1 || px > x2) {
return false;
}
// check if all points lie on the same line
// y1 = kx1 + b, y2 = kx2 + b
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
// coefficient for the line (p0, p1)
const kL = (y2 - y1) / (x2 - x1);
// coefficient for the line segment (p0, point)
const kP1 = (py - y1) / (px - x1);
// coefficient for the line segment (point, p1)
const kP2 = (py - y2) / (px - x2);
// because we are basing both lines from the same starting point
// the only option for collinearity is having same coefficients
// using it for floating point comparisons
const epsilon = 0.3;
// if coefficient is more than an arbitrary epsilon,
// these lines are nor collinear
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
return false;
}
// store the coefficient because we are goint to need it
kLine = kL;
idx = i;
return true;
});
// Return a coordinate that is always on the line segment
if (retVal === true) {
return { x: point[0], y: kLine * point[0], segment: idx };
}
return null;
};
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
const xd = x2 - x1;
const yd = y2 - y1;
return Math.hypot(xd, yd);
};
export const centerPoint = (a: Point, b: Point): Point => {
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
};
// Checks if the first and last point are close enough
// to be considered a loop
export const isPathALoop = (
points: ExcalidrawLinearElement["points"],
): boolean => {
if (points.length >= 3) {
const [firstPoint, lastPoint] = [points[0], points[points.length - 1]];
return (
distance2d(firstPoint[0], firstPoint[1], lastPoint[0], lastPoint[1]) <=
LINE_CONFIRM_THRESHOLD
);
}
return false;
};
// Draw a line from the point to the right till infiinty
// Check how many lines of the polygon does this infinite line intersects with
// If the number of intersections is odd, point is in the polygon
export const isPointInPolygon = (
points: Point[],
x: number,
y: number,
): boolean => {
const vertices = points.length;
// There must be at least 3 vertices in polygon
if (vertices < 3) {
return false;
}
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
const p: Point = [x, y];
let count = 0;
for (let i = 0; i < vertices; i++) {
const current = points[i];
const next = points[(i + 1) % vertices];
if (doSegmentsIntersect(current, next, p, extreme)) {
if (orderedColinearOrientation(current, p, next) === 0) {
return isPointWithinBounds(current, p, next);
}
count++;
}
}
// true if count is off
return count % 2 === 1;
};
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
// This is an approximation to "does `q` lie on a segment `pr`" check.
const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
return (
q[0] <= Math.max(p[0], r[0]) &&
q[0] >= Math.min(p[0], r[0]) &&
q[1] <= Math.max(p[1], r[1]) &&
q[1] >= Math.min(p[1], r[1])
);
};
// For the ordered points p, q, r, return
// 0 if p, q, r are colinear
// 1 if Clockwise
// 2 if counterclickwise
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
if (val === 0) {
return 0;
}
return val > 0 ? 1 : 2;
};
// Check is p1q1 intersects with p2q2
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
const o1 = orderedColinearOrientation(p1, q1, p2);
const o2 = orderedColinearOrientation(p1, q1, q2);
const o3 = orderedColinearOrientation(p2, q2, p1);
const o4 = orderedColinearOrientation(p2, q2, q1);
if (o1 !== o2 && o3 !== o4) {
return true;
}
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
return true;
}
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
return true;
}
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
return true;
}
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
return true;
}
return false;
};
export const getGridPoint = (
x: number,
y: number,
gridSize: number | null,
): [number, number] => {
if (gridSize) {
return [
Math.round(x / gridSize) * gridSize,
Math.round(y / gridSize) * gridSize,
];
}
return [x, y];
};