forked from cs231n/cs231n.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
139 lines (111 loc) · 3.29 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
layout: default
---
<div style="text-align:center;">
We encourage the use of the <a href="https://hypothes.is/">hypothes.is</a> extension to annote comments and discuss these notes inline.
</div>
<div class="home">
<div class="materials-wrap">
<div class="module-header">Assignments</div>
<div class="materials-item">
<a href="assignment1/">
Assignment #1: Image Classification, kNN, SVM, Softmax
</a>
</div>
<div class="materials-item">
<a href="assignment2/">
Assignment #2: Neural Networks, ConvNets I
</a>
</div>
<div class="materials-item">
<a href="assignment3/">
Assignment #3: ConvNets II, transfer learning, visualization
</a>
</div>
<div class="module-header">Module 0: Preparation</div>
<div class="materials-item">
<a href="python-numpy-tutorial/">
Python / Numpy tutorial
</a>
</div>
<div class="materials-item">
<a href="ipython-tutorial/">
IPython notebook tutorial
</a>
</div>
<div class="materials-item">
<a href="terminal-tutorial/">
Terminal.com tutorial
</a>
</div>
<!-- hardcoding items here to force a specific order -->
<div class="module-header">Module 1: Intro and Neural Networks</div>
<div class="materials-item">
<a href="classification/">
Image classification: data-driven approach, nearest neighbor, train/val/test splits
</a>
</div>
<div class="materials-item">
<a href="linear-classify/">
Linear classification: Support Vector Machine, Softmax
</a>
</div>
<div class="materials-item">
<a href="optimization-1/">
Optimization: Stochastic Gradient Descent, gradient checks
</a>
</div>
<div class="materials-item">
<a href="optimization-2/">
Backpropagation, intuitions
</a>
</div>
<div class="materials-item">
<a href="neural-networks/">
Comprehensive reference to Neural Networks
</a>
</div>
<div class="module-header">Module 2: Convolutional Neural Networks</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Convolutional Neural Networks: architectures, convolution / pooling layers
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Understanding and visualizing Convolutional Neural Networks
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Transfer learning and fine-tuning Convolutional Neural Networks
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
ConvNet Tips and tricks: squeezing out the last few percent
</a>
</div>
<div class="module-header">Module 3: CNN In the wild</div>
<div class="materials-item">
<a href="neuralnetwork2/">
ImageNet challenge
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Other visual recognition tasks: localization, detection
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Beyond the ImageNet challenge
</a>
</div>
<div class="materials-item">
<a href="neuralnetwork2/">
Convolutional Neural Networks in practice: Caffe
</a>
</div>
</div>
</div>