-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainingManager.py
382 lines (339 loc) · 16.3 KB
/
TrainingManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import numpy as np
import torch
import matplotlib.pyplot as plt
import copy
import torch.nn as nn
from tqdm import tqdm
from .utils_ema import EMAHelper
#Wrapper around training and evaluation functions
class TrainingManager:
def __init__(self,
models, # dictionnary with model name as key. Must contain 'default' model
data,
method,
optimizers,
learning_schedules,
eval,
logger = None,
ema_rates = None,
reset_models = None,
**kwargs):
self.epochs = 0
self.total_steps = 0
self.models = models
self.data = data
self.method = method
self.optimizers = optimizers
self.learning_schedules = learning_schedules
self.eval = eval
self.reset_models = reset_models
if ema_rates is None:
self.ema_objects = None
else:
#self.ema_models = [ema.EMAHelper(model, mu = mu) for mu in ema_rates]
logger = eval.logger
# need to set logger to None for the eval deepcopy
eval.logger = None
self.ema_objects = []
for mu in ema_rates:
ema_dict = {name: EMAHelper(model, mu = mu) for name, model in self.models.items()}
ema_dict['eval'] = copy.deepcopy(eval)
self.ema_objects.append(ema_dict)
# self.ema_objects = [{
# 'model': ema.EMAHelper(self.model, mu = mu),
# 'model_vae': ema.EMAHelper(self.model_vae, mu = mu) if self.model_vae is not None else None,
# 'eval': copy.deepcopy(eval),
# } for mu in ema_rates]
#self.ema_evals = [(copy.deepcopy(eval), mu) for mu in ema_rates]
eval.logger = logger
for ema_object in self.ema_objects:
ema_object['eval'].logger = logger
self.kwargs = kwargs
self.logger = logger
def exists_ls(self, name = 'default'):
return (name in self.learning_schedules) and (self.learning_schedules[name] is not None)
def train(self, total_epoch, **kwargs):
tmp_kwargs = copy.deepcopy(self.kwargs)
tmp_kwargs.update(kwargs)
def epoch_callback(epoch_loss):
self.eval.register_epoch_loss(epoch_loss)
if self.logger is not None:
self.logger.log('current_epoch', self.epochs)
def batch_callback(batch_loss):
# batch_loss is nan, reintialize models
if np.isnan(batch_loss):
print('nan in loss detected, reinitializing models...')
models, optimizers, learning_schedules = self.reset_models()
self.models = models
self.optimizers = optimizers
self.learning_schedules = learning_schedules
self.eval.register_batch_loss(batch_loss)
if self.logger is not None:
self.logger.log('current_batch', self.total_steps)
self._train_epochs(total_epoch,
epoch_callback=epoch_callback,
batch_callback=batch_callback,
**tmp_kwargs)
def _train_epochs(
self,
total_epochs,
eval_freq = None,
checkpoint_freq= None,
checkpoint_callback=None,
no_ema_eval = False,
grad_clip = None,
batch_callback = None,
epoch_callback = None,
max_batch_per_epoch = None,
progress = False,
**kwargs):
for name, model in self.models.items():
model.train()
print('training model to epoch {} from epoch {}'.format(total_epochs, self.epochs), '...')
while self.epochs < total_epochs:
epoch_loss = steps = 0
for i, (Xbatch, y) in enumerate(tqdm(self.data) if progress else self.data):
if max_batch_per_epoch is not None:
if i >= max_batch_per_epoch:
break
training_results = self.method.training_losses(self.models, Xbatch, **kwargs)
loss = training_results['loss']
# and finally gradient descent
for name in self.models:
self.optimizers[name].zero_grad()
loss.backward()
for name in self.models:
if grad_clip is not None:
nn.utils.clip_grad_norm_(self.models[name].parameters(), grad_clip)
self.optimizers[name].step()
if self.exists_ls(name):
self.learning_schedules[name].step()
# update ema models
if self.ema_objects is not None:
for e in self.ema_objects:
for name in self.models:
e[name].update(self.models[name])
epoch_loss += loss.item()
steps += 1
self.total_steps += 1
if batch_callback is not None:
batch_callback(loss.item())
epoch_loss = epoch_loss / steps
print('epoch_loss', epoch_loss)
self.epochs += 1
if epoch_callback is not None:
epoch_callback(epoch_loss)
print('Done training epoch {}/{}'.format(self.epochs, total_epochs))
# now potentially checkpoint
if (checkpoint_freq is not None) and (self.epochs % checkpoint_freq) == 0:
checkpoint_callback(self.epochs)
#print(self.save(curr_epoch=self.manager.training_epochs()))
# now potentially eval
if (eval_freq is not None) and (self.epochs % eval_freq) == 0:
self.evaluate()
if not no_ema_eval:
self.evaluate(evaluate_emas=True)
def evaluate(self, evaluate_emas = False, **kwargs):
def ema_callback_on_logging(logger, key, value):
if not (key in ['losses', 'losses_batch']):
logger.log('_'.join(('ema', str(ema_obj['default'].mu), str(key))), value)
if not evaluate_emas:
print('evaluating model')
for name, model in self.models.items():
model.eval()
with torch.inference_mode():
self.eval.evaluate_model(self.models, **kwargs)
elif self.ema_objects is not None:
for ema_obj in self.ema_objects:
models = {name: ema_obj[name].get_ema_model() for name in self.models}
for name in models:
models[name].eval()
with torch.inference_mode():
print('evaluating ema model with mu={}'.format(ema_obj['default'].mu))
ema_obj['eval'].evaluate_model(models, callback_on_logging = ema_callback_on_logging, **kwargs)
def display_plots(self,
ema_mu = None,
title = None,
nb_datapoints = 10000,
marker = '.',
color='blue',
plot_original_data=False,
xlim = (-0.5, 1.5),
ylim = (-0.5, 1.5),
alpha = 0.5,
forward=False): # animate forward or backward
# loading the right model
models = {}
if ema_mu is not None:
if self.ema_objects is not None:
for ema_obj in self.ema_objects:
for name, ema in ema_obj.items():
if ema.mu == ema_mu:
models[name] = ema.get_ema_model()
models[name].eval()
else:
models = self.models
assert len(models) != 0, 'ema_mu={} has not been found'.format(ema_mu)
# number of samples to draw
nsamples = 1 if self.eval.is_image else nb_datapoints
print('Generating {} datapoints'.format(nsamples))
# generate images
gm = self.eval.gen_manager
if forward:
# draw batch from dataloader
X_batch, _ = next(iter(self.data))
X_batch = X_batch[:nb_datapoints]
X_batch = torch.randn_like(X_batch) # Gaussian noise
V_batch = self.method.draw_velocity(X_batch)
history = []
device = self.method.device
self.method.device = 'cpu'
# put everyhting on the device
X_batch = X_batch.to(self.method.device)
V_batch = V_batch.to(self.method.device)
for _ in range(0, self.method.reverse_steps):
t = torch.ones_like(X_batch) * self.method.T / self.method.reverse_steps
X_batch, V_batch = self.method.forward(X_batch, t, speed=V_batch)
history.append(X_batch.detach().clone())
# put back on the device
self.method.device = device
# make history a torch tensor
hist = torch.stack(history)
gm.samples = hist[-1]
gm.history = hist.clamp(-6, 6)
else:
with torch.inference_mode():
gm.generate(self.models, nsamples, get_sample_history = True, print_progression = True)
# get and display plots
if self.eval.is_image:
gm.get_image(black_and_white=True, title=title)
else:
gm.get_plot(plot_original_data=plot_original_data,
limit_nb_datapoints = nb_datapoints,
title=title,
marker = marker,
color=color,
xlim=xlim,
ylim=ylim,
alpha=alpha)
plt.show(block=False)
anim = gm.get_animation(plot_original_data=plot_original_data,
limit_nb_datapoints=nb_datapoints,
title=title,
marker = marker,
color=color,
xlim=xlim,
ylim=ylim,
alpha=alpha,
method = self.method)
plt.show(block=False)
return anim
def load(self, filepath):
# provide key rather than src[key] in case we load an old run that did not contain any vae key
def safe_load_state_dict(dest, src):
if dest is not None:
dest.load_state_dict(src)
checkpoint = torch.load(filepath, map_location=torch.device(self.method.device))
self.total_steps = checkpoint['steps']
self.epochs = checkpoint['epoch']
for name in self.models:
chckpt_model_name = 'model_{}_parameters'.format(name) if name != 'default' else 'model_parameters' # retro-compatibility: 'default' becomes ''
chckpt_optim_name = 'optimizer_{}'.format(name) if name != 'default' else 'optimizer'
chckpt_ls_name = 'learnin_schedule_{}'.format(name) if name != 'default' else 'learning_schedule'
chckpt_ema_name = 'ema_models_{}'.format(name) if name != 'default' else 'ema_models'
print('loading model {} from checkpoint'.format(name))
safe_load_state_dict(self.models[name], checkpoint[chckpt_model_name])
print('loading optimizer {} from checkpoint'.format(name))
safe_load_state_dict(self.optimizers[name], checkpoint[chckpt_optim_name])
print('loading learning schedule {} from checkpoint'.format(name))
safe_load_state_dict(self.learning_schedules[name], checkpoint[chckpt_ls_name])
if self.ema_objects is not None:
assert chckpt_ema_name in checkpoint, 'no ema model in checkpoint'
for ema_obj, ema_state in zip(self.ema_objects, checkpoint[chckpt_ema_name]):
print('loading ema model {} with mu={} from checkpoint'.format(name, ema_obj[name].mu))
safe_load_state_dict(ema_obj[name], ema_state)
def save(self, filepath):
def safe_save_state_dict(src):
return src.state_dict() if src is not None else None
checkpoint = {
'epoch': self.epochs,
'steps': self.total_steps,
}
for name in self.models:
chckpt_model_name = 'model_{}_parameters'.format(name) if name != 'default' else 'model_parameters' # retro-compatibility: 'default' becomes ''
chckpt_optim_name = 'optimizer_{}'.format(name) if name != 'default' else 'optimizer'
chckpt_ls_name = 'learnin_schedule_{}'.format(name) if name != 'default' else 'learning_schedule'
chckpt_ema_name = 'ema_models_{}'.format(name) if name != 'default' else 'ema_models'
checkpoint[chckpt_model_name] = safe_save_state_dict(self.models[name])
checkpoint[chckpt_optim_name] = safe_save_state_dict(self.optimizers[name])
checkpoint[chckpt_ls_name] = safe_save_state_dict(self.learning_schedules[name])
if self.ema_objects is not None:
checkpoint[chckpt_ema_name] = [safe_save_state_dict(ema_obj[name]) for ema_obj in self.ema_objects]
torch.save(checkpoint, filepath)
def save_eval_metrics(self, eval_path):
eval_save = {'eval': self.eval.evals}
if self.ema_objects is not None:
eval_save.update({'ema_evals': [(ema_obj['eval'].evals, ema_obj['default'].mu) for ema_obj in self.ema_objects]})
torch.save(eval_save, eval_path)
def load_eval_metrics(self, eval_path):
eval_save = torch.load(eval_path)
assert 'eval' in eval_save, 'no eval subdict in eval file'
# load eval metrics
self.eval.evals = eval_save['eval']
self.eval.log_existing_eval_values(folder='eval')
# load ema eval metrics
if not 'ema_evals' in eval_save:
return
assert self.ema_objects is not None
# saved ema evaluation, in order
saved_ema_evals = [ema_eval_save for ema_eval_save, mu_save in eval_save['ema_evals']]
# saved ema mu , in order
saved_mus = [mu_save for ema_eval_save, mu_save in eval_save['ema_evals']]
for ema_obj in self.ema_objects:
# if mu has not been run previously, no loading
if ema_obj['default'].mu not in saved_mus:
continue
# find index of our mu of interest
idx = saved_mus.index(ema_obj['default'].mu)
# load the saved evaluation
ema_obj['eval'].evals = saved_ema_evals[idx]
# log the saved evaluation
ema_obj['eval'].log_existing_eval_values(folder='eval_ema_{}'.format(ema_obj['default'].mu))
# also returns evals
def display_evals(self,
key,
rang = None,
xlim = None,
ylim = None,
log_scale = False):
import copy
metric = copy.deepcopy(self.eval.evals[key])
if rang is not None:
metric = metric[rang[0]:rang[1]]
plt.plot(np.arange(len(metric)), metric)
if xlim is not None:
plt.xlim(xlim)
if ylim is not None:
plt.ylim(ylim)
if log_scale:
plt.yscale('log')
plt.show()
# def get_ema_model(self, mu):
# assert False, 'deprecated'
# for ema_obj in self.ema_objects:
# if ema_obj['model'].mu == mu:
# return ema_obj['model'].get_ema_model()
# #import copy
# #new_ema_model = copy.deepcopy(self.model)
# #ema.ema(new_ema_model)
# #return new_ema_model
# raise ValueError('No EMA model with mu = {}'.format(mu))
#def reset_training(self, new_parameters = None):
# self.eval.reset()
# self.total_steps = 0
# self.epochs = 0
# self.learning_schedule.reset()
# if self.logger is not None:
# self.logger.stop()
# if new_parameters is not None:
# self.logger.initialize(new_parameters)