-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiplier_uni.c
119 lines (105 loc) · 3.36 KB
/
multiplier_uni.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*******************************************************************************
*
* This file is used to train and test unipolar networks for multiplication
* of DSM sinusoids with different frequency,
* amplitude, and phase values. These networks, in particular,
* are used with the ReLU and sigmoid activation functions.
*
* Copyright (c) Dario Sanfilippo 2021
*
******************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#include <time.h>
#include "signals.c"
#include "random.c"
#include "osc.c"
#include "dsm.c"
#include "bitmath.c"
#include "data.c"
#include "kann.c"
#include "kautodiff.c"
int main(void) {
srand(time(0));
kad_node_t* t;
kann_t* ann;
size_t inputs = 128;
size_t outputs = inputs / 2;
size_t num_layers = 8;
size_t neurons = outputs;
size_t SR = 192000;
/* Create the neural network */
t = kann_layer_input(inputs);
for (size_t i = 0; i < num_layers; i++) {
t = kann_layer_dense(t, neurons);
t = kad_sigm(t);
}
t = kann_layer_cost(t, outputs, KANN_C_MSE);
ann = kann_new(t, 0);
/* Create training data set */
size_t setsize = 65536;
Sig* x = malloc(sizeof(Sig));
Sig* y = malloc(sizeof(Sig));
sig_alloc(x, setsize, inputs, SR);
sig_alloc(y, setsize, outputs, SR);
mul_data(x, y);
for (size_t i = 0; i < setsize; i++) {
bi2uni(x, x, i, i);
bi2uni(y, y, i, i);
}
/* Train the net */
float lr = .001, frac_val = .1;
size_t mini_size = 32;
size_t max_epoch = 1000;
size_t max_drop_streak = 20;
kann_train_fnn1(ann, lr, mini_size, max_epoch, max_drop_streak, frac_val,
setsize, x->vec_space, y->vec_space);
sig_free(x);
sig_free(y);
/* CSV file setup */
char fname[256];
sprintf(fname, "inputs%zuoutputs%zulayers%zuneurons%zuset%zulearningrate%f.csv",
inputs, outputs, num_layers, neurons, setsize, lr);
FILE* csv;
csv = fopen(fname, "w+");
fprintf(csv, "%s\n", "Error rate");
/* Test the net */
size_t testsize = 100;
size_t outlen = outputs;
size_t err_count = 0;
audio err_rate = 0;
x = malloc(sizeof(Sig));
y = malloc(sizeof(Sig));
const float* output = malloc(sizeof(float) * outlen);
float* rectified = malloc(sizeof(float) * outlen);
sig_alloc(x, testsize, outlen * 2, SR);
sig_alloc(y, testsize, outlen, SR);
mul_data(x, y);
for (size_t i = 0; i < testsize; i++) {
bi2uni(x, x, i, i);
bi2uni(y, y, i, i);
}
for (size_t j = 0; j < testsize; j++) {
output = kann_apply1(ann, x->vec_space[j]);
for (size_t i = 0; i < y->vec_len; i++) {
rectified[i] = output[i] > .5 ? 1.0 : 0.0;
printf("Target: %.10f; prediction: %.10f; error diff: %.10f\n",
y->vec_space[j][i], rectified[i], y->vec_space[j][i] - rectified[i]);
err_count = fabs(y->vec_space[j][i] - rectified[i]) > 0.1 ? err_count + 1 :
err_count;
}
err_rate = err_count / (audio) y->vec_len;
fprintf(csv, "%f\n", err_rate);
err_count = 0;
}
sig_free(x);
sig_free(y);
free((float*) output);
free(rectified);
fclose(csv);
return EXIT_SUCCESS;
}