forked from DAGWorks-Inc/hamilton
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_default_data_quality.py
247 lines (234 loc) · 8.54 KB
/
test_default_data_quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import collections
import inspect
from typing import Any, Type
import numpy
import numpy as np
import pandas as pd
import pytest
import hamilton.data_quality.base
from hamilton.data_quality import default_validators
from hamilton.data_quality.base import BaseDefaultValidator
from hamilton.data_quality.default_validators import (
AVAILABLE_DEFAULT_VALIDATORS,
resolve_default_validators,
)
from tests.resources.dq_dummy_examples import (
DUMMY_VALIDATORS_FOR_TESTING,
SampleDataValidator1,
SampleDataValidator2,
SampleDataValidator3,
)
@pytest.mark.parametrize(
"output_type, kwargs, importance, expected",
[
(int, {"equal_to": 1}, "warn", [SampleDataValidator1(importance="warn", equal_to=1)]),
(int, {"equal_to": 5}, "fail", [SampleDataValidator1(importance="fail", equal_to=5)]),
(
pd.Series,
{"dataset_length": 1},
"warn",
[SampleDataValidator2(importance="warn", dataset_length=1)],
),
(
pd.Series,
{"dataset_length": 5},
"fail",
[SampleDataValidator2(importance="fail", dataset_length=5)],
),
(
pd.Series,
{"dataset_length": 1, "dtype": np.int64},
"warn",
[
SampleDataValidator2(importance="warn", dataset_length=1),
SampleDataValidator3(importance="warn", dtype=np.int64),
],
),
],
)
def test_resolve_default_validators(output_type, kwargs, importance, expected):
resolved_validators = resolve_default_validators(
output_type=output_type,
importance=importance,
available_validators=DUMMY_VALIDATORS_FOR_TESTING,
**kwargs,
)
assert resolved_validators == expected
@pytest.mark.parametrize(
"output_type, kwargs, importance",
[(str, {"dataset_length": 1}, "warn"), (pd.Series, {"equal_to": 1}, "warn")],
)
def test_resolve_default_validators_error(output_type, kwargs, importance):
with pytest.raises(ValueError):
resolve_default_validators(
output_type=output_type,
importance=importance,
available_validators=DUMMY_VALIDATORS_FOR_TESTING,
**kwargs,
)
@pytest.mark.parametrize(
"cls,param,data,should_pass",
[
(
default_validators.DataInRangeValidatorPandasSeries,
(0, 1),
pd.Series([0.1, 0.2, 0.3]),
True,
),
(
default_validators.DataInRangeValidatorPandasSeries,
(0, 1),
pd.Series([-30.0, 0.1, 0.2, 0.3, 100.0]),
False,
),
(default_validators.DataInValuesValidatorPandasSeries, [0, 1], pd.Series([0, 1, 1]), True),
(
default_validators.DataInValuesValidatorPandasSeries,
[0.0, 1.0],
pd.Series([0.0, 1.0, 1.0]),
True,
),
(
default_validators.DataInValuesValidatorPandasSeries,
["a", "b"],
pd.Series(["a", "b", "b"]),
True,
),
(default_validators.DataInValuesValidatorPandasSeries, [0], pd.Series([0, 1, 1]), False),
(
default_validators.DataInValuesValidatorPandasSeries,
[0.0],
pd.Series([0.0, 1.0, 1.0]),
False,
),
(
default_validators.DataInValuesValidatorPandasSeries,
["a"],
pd.Series(["a", "b", "b"]),
False,
),
(default_validators.DataInRangeValidatorPrimitives, (0, 1), 0.5, True),
(default_validators.DataInRangeValidatorPrimitives, (0, 1), 100.3, False),
(default_validators.DataInValuesValidatorPrimitives, [0, 1], 1, True),
(default_validators.DataInValuesValidatorPrimitives, [0.0, 1.0], 1.0, True),
(default_validators.DataInValuesValidatorPrimitives, ["a", "b"], "b", True),
(default_validators.DataInValuesValidatorPrimitives, [0], 1, False),
(default_validators.DataInValuesValidatorPrimitives, [0.0], 1.0, False),
(default_validators.DataInValuesValidatorPrimitives, ["a"], "b", False),
(
default_validators.MaxFractionNansValidatorPandasSeries,
0.5,
pd.Series([1.0, 2.0, 3.0, None]),
True,
),
(
default_validators.MaxFractionNansValidatorPandasSeries,
0,
pd.Series([1.0, 2.0, 3.0, None]),
False,
),
(
default_validators.MaxFractionNansValidatorPandasSeries,
0.5,
pd.Series([1.0, 2.0, None, None]),
True,
),
(
default_validators.MaxFractionNansValidatorPandasSeries,
0.5,
pd.Series([1.0, None, None, None]),
False,
),
(
default_validators.MaxFractionNansValidatorPandasSeries,
0.5,
pd.Series([None, None, None, None]),
False,
),
(
default_validators.DataTypeValidatorPandasSeries,
numpy.dtype("int"),
pd.Series([1, 2, 3]),
True,
),
(
default_validators.DataTypeValidatorPandasSeries,
numpy.dtype("int"),
pd.Series([1.0, 2.0, 3.0]),
False,
),
(
default_validators.DataTypeValidatorPandasSeries,
numpy.dtype("object"),
pd.Series(["hello", "goodbye"]),
True,
),
(
default_validators.DataTypeValidatorPandasSeries,
numpy.dtype("object"),
pd.Series([1, 2]),
False,
),
(default_validators.DataTypeValidatorPrimitives, int, 1, True),
(default_validators.DataTypeValidatorPrimitives, str, "asdfasdf", True),
(default_validators.DataTypeValidatorPrimitives, bool, True, True),
(default_validators.DataTypeValidatorPrimitives, float, 2.0, True),
(default_validators.DataTypeValidatorPrimitives, int, 1.0, False),
(default_validators.DataTypeValidatorPrimitives, str, 1234, False),
(default_validators.DataTypeValidatorPrimitives, bool, 0, False),
(default_validators.DataTypeValidatorPrimitives, float, 2, False),
(
default_validators.MaxStandardDevValidatorPandasSeries,
1.0,
pd.Series([0.1, 0.2, 0.3, 0.4]),
True,
),
(
default_validators.MaxStandardDevValidatorPandasSeries,
0.01,
pd.Series([0.1, 0.2, 0.3, 0.4]),
False,
),
(default_validators.AllowNaNsValidatorPandasSeries, False, pd.Series([0.1, None]), False),
(default_validators.AllowNaNsValidatorPandasSeries, False, pd.Series([0.1, 0.2]), True),
(default_validators.AllowNoneValidator, False, None, False),
(default_validators.AllowNoneValidator, False, 1, True),
(default_validators.AllowNoneValidator, True, None, True),
(default_validators.AllowNoneValidator, True, 1, True),
],
)
def test_default_data_validators(
cls: Type[hamilton.data_quality.base.BaseDefaultValidator],
param: Any,
data: Any,
should_pass: bool,
):
validator = cls(**{cls.arg(): param, "importance": "warn"})
result = validator.validate(data)
assert result.passes == should_pass
def test_to_ensure_all_validators_added_to_default_validator_list():
def predicate(maybe_cls: Any) -> bool:
if not inspect.isclass(maybe_cls):
return False
return issubclass(maybe_cls, BaseDefaultValidator) and maybe_cls != BaseDefaultValidator
all_subclasses = inspect.getmembers(default_validators, predicate)
missing_classes = [
item
for (_, item) in all_subclasses
if item not in default_validators.AVAILABLE_DEFAULT_VALIDATORS
]
assert len(missing_classes) == 0
def test_that_all_validators_with_the_same_arg_have_the_same_name():
kwarg_to_name_map = {}
conflicting = collections.defaultdict(list)
for validator in AVAILABLE_DEFAULT_VALIDATORS:
print(validator.arg(), validator.name())
if validator.arg() not in kwarg_to_name_map:
kwarg_to_name_map[validator.arg()] = validator.name()
if kwarg_to_name_map[validator.arg()] != validator.name():
conflicting[validator.arg()] = validator.name()
if len(conflicting) > 0:
raise ValueError(
f"The following args have multiple classes with different corresponding names. "
f"Validators with the same arg must all have the same name: {conflicting}"
)