This repository has been archived by the owner on May 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathinit.py
58 lines (42 loc) · 2.71 KB
/
init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import argparse
import os
class Options():
"""This class defines options used during both training and test time."""
def __init__(self):
"""Reset the class; indicates the class hasn't been initailized"""
self.initialized = False
def initialize(self, parser):
# basic parameters
parser.add_argument('--images_folder', type=str, default='./Data_folder/images')
parser.add_argument('--labels_folder', type=str, default='./Data_folder/labels')
parser.add_argument('--increase_factor_data', default=1, help='Increase data number per epoch')
parser.add_argument('--preload', type=str, default=None)
parser.add_argument('--gpu_ids', type=str, default='2,3', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--workers', default=8, type=int, help='number of data loading workers')
# dataset parameters
parser.add_argument('--network', default='unetr', help='nnunet, unetr')
parser.add_argument('--patch_size', default=(256, 256, 16), help='Size of the patches extracted from the image')
parser.add_argument('--spacing', default=[0.7, 0.7, 3], help='Original Resolution')
parser.add_argument('--resolution', default=None, help='New Resolution, if you want to resample the data in training. I suggest to resample in organize_folder_structure.py, otherwise in train resampling is slower')
parser.add_argument('--batch_size', type=int, default=4, help='batch size, depends on your machine')
parser.add_argument('--in_channels', default=1, type=int, help='Channels of the input')
parser.add_argument('--out_channels', default=1, type=int, help='Channels of the output')
# training parameters
parser.add_argument('--epochs', default=1000, help='Number of epochs')
parser.add_argument('--lr', default=0.01, help='Learning rate')
parser.add_argument('--benchmark', default=True)
# Inference
# This is just a trick to make the predict script working, do not touch it now for the training.
parser.add_argument('--result', default=None, help='Keep this empty and go to predict_single_image script')
parser.add_argument('--weights', default=None, help='Keep this empty and go to predict_single_image script')
self.initialized = True
return parser
def parse(self):
if not self.initialized:
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
opt = parser.parse_args()
# set gpu ids
if opt.gpu_ids != '-1':
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
return opt