-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsip_solver.cpp
502 lines (422 loc) · 13.6 KB
/
sip_solver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#include "sip_solver.h"
void NORMP( double Z, double *P, double *Q, double *PDF )
{
/* Normal distribution probabilities accurate to 1.e-15.
Z = no. of standard deviations from the mean.
P, Q = probabilities to the left & right of Z. P + Q = 1.
PDF = the probability density.
Based upon algorithm 5666 for the error function, from:
Hart, J.F. et al, 'Computer Approximations', Wiley 1968
Programmer: Alan Miller
Latest revision - 30 March 1986 */
double zero = 0.0, one = 1.0, half = 0.5;
double ltone = 7.0, utzero = 18.66, con = 1.28;
double P0, P1, P2, P3, P4, P5, P6;
double Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7;
double CUTOFF, EXPNTL, ROOT2PI, ZABS;
P0 = 220.2068679123761;
P1 = 221.2135961699311;
P2 = 112.0792914978709;
P3 = 33.91286607838300;
P4 = 6.373962203531650;
P5 = 0.7003830644436881;
P6 = 0.3526249659989109E-01;
Q0 = 440.4137358247522;
Q1 = 793.8265125199484;
Q2 = 637.3336333788311;
Q3 = 296.5642487796737;
Q4 = 86.78073220294608;
Q5 = 16.06417757920695;
Q6 = 1.755667163182642;
Q7 = 0.8838834764831844E-01;
CUTOFF = 7.071;
ROOT2PI = 2.506628274631001;
ZABS = fabs( Z );
// |Z| > 37.0
if ( ZABS > 37.0 )
{
*PDF = zero;
if ( Z > zero )
{
*P = one;
*Q = zero;
}
else
{
*P = zero;
*Q = one;
}
return;
}
// |Z| <= 37.0
EXPNTL = exp( -half * ZABS * ZABS );
*PDF = EXPNTL / ROOT2PI;
// |Z| < CUTOFF = 10/sqrt(2)
if ( ZABS < CUTOFF )
*P = EXPNTL * ( ( ( ( ( ( P6 * ZABS + P5 ) * ZABS + P4 ) * ZABS + P3 ) * ZABS +
P2 ) * ZABS + P1 ) * ZABS + P0 ) / ( ( ( ( ( ( ( Q7 * ZABS + Q6 ) * ZABS +
Q5 ) * ZABS + Q4 ) * ZABS + Q3 ) * ZABS + Q2 ) * ZABS + Q1 ) * ZABS + Q0 );
// |Z| >= CUTOFF
else
*P = *PDF / ( ZABS + one / ( ZABS + 2.0 / ( ZABS + 3.0 / ( ZABS + 4.0 /
( ZABS + 0.65 ) ) ) ) );
if ( Z < zero )
*Q = one - *P;
else
{
*Q = *P;
*P = one - *Q;
}
}
double f_bar_n( const int x[], double W[][SET], int n, int start )
{
double totalRewards = 0;
double totalOverKnapsackSize = 0;
for ( int ii = 0; ii < SET; ii++ )
{
totalRewards = rewards[ii] * x[ii] + totalRewards;
}
double itemsWeight;
for ( int jj = start; jj < start + n; jj++ )
{
itemsWeight = 0;
for ( int ii = 0; ii < SET; ii ++ )
itemsWeight = itemsWeight + W[jj][ii] * x[ii];
itemsWeight = itemsWeight - KNAPSACK_SIZE;
totalOverKnapsackSize = totalOverKnapsackSize + max( 0, itemsWeight );
}
return ( totalRewards - double( C * totalOverKnapsackSize / n ) );
}
double f_scenario( const int x[], double W[][SET], int scenarioNum )
{
double totalRewards = 0;
double totalOverKnapsackSize = 0;
for ( int ii = 0; ii < SET; ii++ )
{
totalRewards = rewards[ii] * x[ii] + totalRewards;
}
double itemsWeight = 0;
for ( int ii = 0; ii < SET; ii ++ )
itemsWeight = itemsWeight + W[scenarioNum][ii] * x[ii];
itemsWeight = itemsWeight - KNAPSACK_SIZE;
totalOverKnapsackSize = totalOverKnapsackSize + max( 0, itemsWeight );
return ( totalRewards - double( C * totalOverKnapsackSize ) );
}
void Set_Aktiv( int Aktiv[][POWSET], double f[], int s )
{
for( int ii = 1; ii < pow( 2, s + 1 ); ii = ii + 1 )
{
if ( !Aktiv[s][ii] )
{
Aktiv[s + 1][2 * ii] = 0;
Aktiv[s + 1][2 * ii + 1] = 0;
}
else
{
if( ii % 2 == 1 )
{
if ( f[ii] < f[ii - 1] )
{
Aktiv[s + 1][2 * ii] = 0;
Aktiv[s + 1][2 * ii + 1] = 0;
}
}
}
}
}
// CHANGED BY DAVID LOVE -- I was running into segmentation faults caused by
// delta[][] being too big to be allocated. In order to save memory, I have
// changed the allocation to a static one, and I have changed the indices.
// Delta only needs o be as large as [n_k] in the first index, whereas before
// it was [start + n_k] and before that [COUNT] for a very large number.
// However, only the final n_k rows were used. Below, I first changed all
// instances of "start" to "int(0)", to make the loop indices correct.
// Then I changed all instances of "W[jj]" to "W[start+jj]".
// Finally, the declaration of delta[][] was changed to be dynamic.
// You can get the old code back by reversing these changes.
void Solve_SIP( int n_k, int start, double W[][SET], int x_sol[], double& z )
{
// CHANGED BY DAVID LOVE -- made delta dynamically allocated.
double** delta; // Cf. Dynamic Programming Function (Solve_SIP)
//double delta[int(0) + n_k][POWSET]; // Cf. Dynamic Programming Function (Solve_SIP)
double f[POWSET]; // For use in dynamic programming algorithm
int Active[SET][POWSET]; // Idem
// CHANGED BY DAVID LOVE -- Dynamically allocating the array delta
delta = new double*[int(0) + n_k];
for( size_t ii = 0; ii < int(0) + n_k; ii++ )
delta[ii] = new double[POWSET];
/*Initializations*/
for( int ii = 0; ii < pow( 2, SET ); ii++ )
{
f[ii] = 0;
for ( int k = 0; k < SET; k++ )
Active[k][ii] = 1;
for( int jj = int(0); jj < int(0) + n_k; jj++ )
delta[jj][ii] = - KNAPSACK_SIZE;
}
/*Stage Zero Computations*/
f[0] = 0;
f[1] = rewards[0];
for( int jj = int(0); jj < int(0) + n_k; jj++ )
{
delta[jj][1] = delta[jj][1] + W[start+jj][0];
if ( W[start+jj][0] > KNAPSACK_SIZE )
f[1] = f[1] - ( double( C ) / double( n_k ) ) * ( W[start+jj][0] - KNAPSACK_SIZE );
}
/*Inactivate "inferior" combinations*/
Set_Aktiv( Active, f, 0 );
/*Continue with procedure up to stage SET - 2*/
int s;
for( s = 1; s < SET - 1; s++ )
{
for( int ii = int( pow( 2, s + 1 ) ) - 2; ii >= 0; ii = ii - 2 )
{
if( Active[s][ii] )
{
f[ii] = f[ii / 2];
f[ii + 1] = f[ii] + rewards[s];
for( int jj = int(0); jj < int(0) + n_k; jj++ )
{
delta[jj][ii] = delta[jj][ii / 2];
delta[jj][ii + 1] = delta[jj][ii] + W[start+jj][s];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] <= 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * delta[jj][ii + 1];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] > 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * W[start+jj][s];
}
}
}
Set_Aktiv( Active, f, s );
}
/*Last Stage -- And finding optimal solution in decimal*/
int sol = 0;
z = 0;
for( int ii = int( pow( 2, SET ) ) - 2; ii >= 0; ii = ii - 2 )
{
if( Active[SET - 1][ii] )
{
f[ii] = f[ii / 2];
if( f[ii] > z )
{
sol = ii;
z = f[ii];
}
}
if( Active[SET - 1][ii + 1] )
{
f[ii + 1] = f[ii] + rewards[s];
for( int jj = int(0); jj < int(0) + n_k; jj++ )
{
delta[jj][ii] = delta[jj][ii / 2];
delta[jj][ii + 1] = delta[jj][ii] + W[start+jj][s];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] <= 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * delta[jj][ii + 1];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] > 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * W[start+jj][s];
}
if( f[ii + 1] > z )
{
sol = ii + 1;
z = f[ii + 1];
}
}
}
/*Converting optimal solution to 0-1 format*/
for( int ii = 0; ii < SET; ii++ )
x_sol[ii] = 0;
int k = SET - 1;
while( sol > 1 )
{
x_sol[k] = sol % 2;
sol = int( floor( double( sol / 2 ) ) );
k--;
}
x_sol[k] = 1;
// CHANGED BY DAVID LOVE -- Deleting the array delta
for( size_t ii = 0; ii < int(0) + n_k; ii++ )
delete[] delta[ii];
delete[] delta;
}
void Solve_SIP_Orig( int n_k, int start, double W[][SET], int x_sol[], double& z )
{
double delta[start + n_k][POWSET]; // Cf. Dynamic Programming Function (Solve_SIP)
double f[POWSET]; // For use in dynamic programming algorithm
int Active[SET][POWSET]; // Idem
/*Initializations*/
for( int ii = 0; ii < pow( 2, SET ); ii++ )
{
f[ii] = 0;
for ( int k = 0; k < SET; k++ )
Active[k][ii] = 1;
for( int jj = start; jj < start + n_k; jj++ )
delta[jj][ii] = - KNAPSACK_SIZE;
}
/*Stage Zero Computations*/
f[0] = 0;
f[1] = rewards[0];
for( int jj = start; jj < start + n_k; jj++ )
{
delta[jj][1] = delta[jj][1] + W[jj][0];
if ( W[jj][0] > KNAPSACK_SIZE )
f[1] = f[1] - ( double( C ) / double( n_k ) ) * ( W[jj][0] - KNAPSACK_SIZE );
}
/*Inactivate "inferior" combinations*/
Set_Aktiv( Active, f, 0 );
/*Continue with procedure up to stage SET - 2*/
int s;
for( s = 1; s < SET - 1; s++ )
{
for( int ii = int( pow( 2, s + 1 ) ) - 2; ii >= 0; ii = ii - 2 )
{
if( Active[s][ii] )
{
f[ii] = f[ii / 2];
f[ii + 1] = f[ii] + rewards[s];
for( int jj = start; jj < start + n_k; jj++ )
{
delta[jj][ii] = delta[jj][ii / 2];
delta[jj][ii + 1] = delta[jj][ii] + W[jj][s];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] <= 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * delta[jj][ii + 1];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] > 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * W[jj][s];
}
}
}
Set_Aktiv( Active, f, s );
}
/*Last Stage -- And finding optimal solution in decimal*/
int sol = 0;
z = 0;
for( int ii = int( pow( 2, SET ) ) - 2; ii >= 0; ii = ii - 2 )
{
if( Active[SET - 1][ii] )
{
f[ii] = f[ii / 2];
if( f[ii] > z )
{
sol = ii;
z = f[ii];
}
}
if( Active[SET - 1][ii + 1] )
{
f[ii + 1] = f[ii] + rewards[s];
for( int jj = start; jj < start + n_k; jj++ )
{
delta[jj][ii] = delta[jj][ii / 2];
delta[jj][ii + 1] = delta[jj][ii] + W[jj][s];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] <= 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * delta[jj][ii + 1];
if( ( delta[jj][ii + 1] > 0 ) && ( delta[jj][ii] > 0 ) )
f[ii + 1] = f[ii + 1] - ( double( C ) / double( n_k ) ) * W[jj][s];
}
if( f[ii + 1] > z )
{
sol = ii + 1;
z = f[ii + 1];
}
}
}
/*Converting optimal solution to 0-1 format*/
for( int ii = 0; ii < SET; ii++ )
x_sol[ii] = 0;
int k = SET - 1;
while( sol > 1 )
{
x_sol[k] = sol % 2;
sol = int( floor( double( sol / 2 ) ) );
k--;
}
x_sol[k] = 1;
}
double obj_func( const int x[] )
{
double mu_x = 0;
double sigma_x = 0;
double zScore;
double z_temp;
for ( int ii = 0; ii < SET; ii++ )
mu_x = mu_x + mu[ii] * x[ii];
mu_x = mu_x - KNAPSACK_SIZE;
double Sum = 0;
for ( int ii = 0; ii < SET; ii++ )
Sum = Sum + pow( sigma[ii], 2 ) * pow( x[ii], 2 );
sigma_x = sqrt( Sum );
double totalReward = 0;
for ( int ii = 0; ii < SET; ii++ )
totalReward = totalReward + rewards[ii] * x[ii];
if ( sigma_x == 0 )
{
//zScore = double( mu_x / 0.00001 );
z_temp = totalReward - C*( max( 0, mu_x ) );
}
else
{
zScore = double( mu_x / sigma_x );
double P1, P2, Q;
NORMP( zScore, &P1, &P2, &Q );
z_temp = totalReward - C*( mu_x*P1 + ( sigma_x/( sqrt( 2*PI )*exp( 0.5*pow( zScore, 2 ) ) ) ) );
}
return z_temp;
}
void Find_Next( int x[], int last )
{
if ( x[last] == 0 )
x[last] = 1;
else
{
x[last] = 0;
last = last - 1;
if( !( last < 0 ) )
Find_Next( x, last );
}
}
void Optimal( int x_star[], double& z_star )
{
int x[SET];
double temp;
z_star = -100000;
for ( int ii = 0; ii < SET; ii++ )
x[ii] = 0;
for ( int jj = 0; jj < pow( 2, SET ); jj++ )
{
temp = obj_func( x );
if ( temp > z_star )
{
z_star = temp;
for ( int ii = 0; ii < SET; ii++ )
x_star[ii] = x[ii];
}
Find_Next( x, SET - 1 );
}
}
double S_variance( const int x_hat[], int x_gap[], const int m_k, int start, double W2[][SET] )
{
double sum = 0;
for ( int jj = start; jj < start + m_k; jj++ )
{
sum = sum + pow( f_scenario( x_hat, W2, jj ) - f_scenario( x_gap, W2, jj ) - f_bar_n( x_hat, W2, m_k, start ) + f_bar_n( x_gap, W2, m_k, start ) , 2 );
}
return double( sum / ( m_k - 1 ) );
}
double Gap_estimate( const int x_hat[], const int n_k, double& s_std, double W2[][SET] )
{
static int x_gap[SET]; // Stores solution of gap problem
static double z_gap; // objective value of gap problem
int start = 0;
int m = COUNT / RP;
double mu_hat = 0.0;
s_std = 0.0;
for( int ii = 0; ii < RP; ii++ )
{
start = ii * m;
Solve_SIP( n_k, start, W2, x_gap, z_gap );
mu_hat = mu_hat + z_gap - f_bar_n( x_hat, W2, n_k, start );
s_std = s_std + S_variance( x_hat, x_gap, n_k, start, W2 );
}
mu_hat = double( mu_hat / RP );
s_std = sqrt( double( s_std / RP ) );
cout << "Test Output: Gap Estimate = " << mu_hat << endl;
return mu_hat;
}