-
Notifications
You must be signed in to change notification settings - Fork 8
/
apriori.py
309 lines (123 loc) · 3.53 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# -*- coding: cp936 -*-
'''
Apriori算法
Ben
2015.09.28
'''
#coding:utf-8
from numpy import *
def loadData():
return[[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
def createC1(dataSet):
c1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in c1:
c1.append([item])
c1.sort()
return map(frozenset,c1)
#构建频繁项集
def scanD(D,Ck,minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):#判断tid是否在can中
if not ssCnt.has_key(can):
ssCnt[can] = 1
else:
ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.insert(0,key)
supportData[key] = support
return retList,supportData
'''
#test
dataSet = loadData()
c1 = createC1(dataSet)
D = map(set,dataSet)
L1,supportData = scanD(D,c1,0.5)
print L1
print supportData
'''
#构建多个商品对应的项集
def aprioriGen(Lk,k):
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1,lenLk):
L1 = list(Lk[i])[:k-2]
L2 = list(Lk[j])[:k-2]
L1.sort()
L2.sort()
if L1 == L2:
retList.append(Lk[i]|Lk[j])
return retList
def apriori(dataSet,minSupport = 0.5):
C1 = createC1(dataSet)
D = map(set,dataSet)
L1,supportData = scanD(D,C1,minSupport)
L = [L1]
k = 2
while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2],k)
Lk,supK = scanD(D,Ck,minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L,supportData
'''
#test
dataSet = loadData()
minSupport = 0.5
a,b = apriori(dataSet,minSupport)
print a
print b
'''
#使用关联规则生成函数
def generateRules(L,supportData,minConf = 0.7):
bigRuleList = []
for i in range(1,len(L)):
for freqSet in L[i]:
H1 = [frozenset([item]) for item in freqSet]
if (i > 1):
rulesFromConseq(freqSet,H1,supportData,bigRuleList,minConf)
else:
calcConf(freqSet,H1,supportData,bigRuleList,minConf)
return bigRuleList
#集合右边一个元素
def calcConf(freqSet,H,supportData,brl,minConf = 0.7):
prunedH = []
for conseq in H:
conf = supportData[freqSet]/supportData[freqSet - conseq]
if conf >= minConf:
print freqSet - conseq,'-->',conseq,'conf:',conf
brl.append((freqSet-conseq,conseq,conf))
prunedH.append(conseq)
return prunedH
#生成更多的关联规则
def rulesFromConseq(freqSet,H,supportData,br1,minConf = 0.7):
m = len(H[0])
if (len(freqSet)>(m + 1)):
Hmp1 = aprioriGen(H,m+1)
Hmp1 = calcConf(freqSet,Hmp1,supportData,br1,minConf)
if (len(Hmp1) > 1):
rulesFromConseq(freqSet,Hmp1,supportData,br1,minConf)
'''
#test
dataSet = loadData()
minSupport = 0.5
L,suppData = apriori(dataSet,minSupport)
rules = generateRules(L,suppData,minConf = 0.5)
print rules
'''
#test
mushDatSet = [line.split() for line in open('mushroom.dat').readlines()]
L,supportData = apriori(mushDatSet,minSupport = 0.3)
for item in L[1]:
if item.intersection('2'):
print item