forked from nlpyang/PreSumm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_ext.py
419 lines (350 loc) · 15.8 KB
/
trainer_ext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import numpy as np
import torch
from tensorboardX import SummaryWriter
import distributed
from models.reporter_ext import ReportMgr, Statistics
from others.logging import logger
from others.utils import test_rouge, rouge_results_to_str
def _tally_parameters(model):
n_params = sum([p.nelement() for p in model.parameters()])
return n_params
def build_trainer(args, device_id, model, optim):
"""
Simplify `Trainer` creation based on user `opt`s*
Args:
opt (:obj:`Namespace`): user options (usually from argument parsing)
model (:obj:`onmt.models.NMTModel`): the model to train
fields (dict): dict of fields
optim (:obj:`onmt.utils.Optimizer`): optimizer used during training
data_type (str): string describing the type of data
e.g. "text", "img", "audio"
model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object
used to save the model
"""
grad_accum_count = args.accum_count
n_gpu = args.world_size
if device_id >= 0:
gpu_rank = int(args.gpu_ranks[device_id])
else:
gpu_rank = 0
n_gpu = 0
print('gpu_rank %d' % gpu_rank)
tensorboard_log_dir = args.model_path
writer = SummaryWriter(tensorboard_log_dir, comment="Unmt")
report_manager = ReportMgr(args.report_every, start_time=-1, tensorboard_writer=writer)
trainer = Trainer(args, model, optim, grad_accum_count, n_gpu, gpu_rank, report_manager)
# print(tr)
if (model):
n_params = _tally_parameters(model)
logger.info('* number of parameters: %d' % n_params)
return trainer
class Trainer(object):
"""
Class that controls the training process.
Args:
model(:py:class:`onmt.models.model.NMTModel`): translation model
to train
train_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
valid_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
optim(:obj:`onmt.utils.optimizers.Optimizer`):
the optimizer responsible for update
trunc_size(int): length of truncated back propagation through time
shard_size(int): compute loss in shards of this size for efficiency
data_type(string): type of the source input: [text|img|audio]
norm_method(string): normalization methods: [sents|tokens]
grad_accum_count(int): accumulate gradients this many times.
report_manager(:obj:`onmt.utils.ReportMgrBase`):
the object that creates reports, or None
model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is
used to save a checkpoint.
Thus nothing will be saved if this parameter is None
"""
def __init__(self, args, model, optim,
grad_accum_count=1, n_gpu=1, gpu_rank=1,
report_manager=None):
# Basic attributes.
self.args = args
self.save_checkpoint_steps = args.save_checkpoint_steps
self.model = model
self.optim = optim
self.grad_accum_count = grad_accum_count
self.n_gpu = n_gpu
self.gpu_rank = gpu_rank
self.report_manager = report_manager
self.loss = torch.nn.BCELoss(reduction='none')
assert grad_accum_count > 0
# Set model in training mode.
if (model):
self.model.train()
def train(self, train_iter_fct, train_steps, valid_iter_fct=None, valid_steps=-1):
"""
The main training loops.
by iterating over training data (i.e. `train_iter_fct`)
and running validation (i.e. iterating over `valid_iter_fct`
Args:
train_iter_fct(function): a function that returns the train
iterator. e.g. something like
train_iter_fct = lambda: generator(*args, **kwargs)
valid_iter_fct(function): same as train_iter_fct, for valid data
train_steps(int):
valid_steps(int):
save_checkpoint_steps(int):
Return:
None
"""
logger.info('Start training...')
# step = self.optim._step + 1
step = self.optim._step + 1
true_batchs = []
accum = 0
normalization = 0
train_iter = train_iter_fct()
total_stats = Statistics()
report_stats = Statistics()
self._start_report_manager(start_time=total_stats.start_time)
while step <= train_steps:
reduce_counter = 0
for i, batch in enumerate(train_iter):
if self.n_gpu == 0 or (i % self.n_gpu == self.gpu_rank):
true_batchs.append(batch)
normalization += batch.batch_size
accum += 1
if accum == self.grad_accum_count:
reduce_counter += 1
if self.n_gpu > 1:
normalization = sum(distributed
.all_gather_list
(normalization))
self._gradient_accumulation(
true_batchs, normalization, total_stats,
report_stats)
report_stats = self._maybe_report_training(
step, train_steps,
self.optim.learning_rate,
report_stats)
true_batchs = []
accum = 0
normalization = 0
if (step % self.save_checkpoint_steps == 0 and self.gpu_rank == 0):
self._save(step)
step += 1
if step > train_steps:
break
train_iter = train_iter_fct()
return total_stats
def validate(self, valid_iter, step=0):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
# Set model in validating mode.
self.model.eval()
stats = Statistics()
with torch.no_grad():
for batch in valid_iter:
src = batch.src
labels = batch.src_sent_labels
segs = batch.segs
clss = batch.clss
mask = batch.mask_src
mask_cls = batch.mask_cls
sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)
loss = self.loss(sent_scores, labels.float())
loss = (loss * mask.float()).sum()
batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels))
stats.update(batch_stats)
self._report_step(0, step, valid_stats=stats)
return stats
def test(self, test_iter, step, cal_lead=False, cal_oracle=False):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
# Set model in validating mode.
def _get_ngrams(n, text):
ngram_set = set()
text_length = len(text)
max_index_ngram_start = text_length - n
for i in range(max_index_ngram_start + 1):
ngram_set.add(tuple(text[i:i + n]))
return ngram_set
def _block_tri(c, p):
tri_c = _get_ngrams(3, c.split())
for s in p:
tri_s = _get_ngrams(3, s.split())
if len(tri_c.intersection(tri_s)) > 0:
return True
return False
if (not cal_lead and not cal_oracle):
self.model.eval()
stats = Statistics()
can_path = '%s_step%d.candidate' % (self.args.result_path, step)
gold_path = '%s_step%d.gold' % (self.args.result_path, step)
with open(can_path, 'w') as save_pred:
with open(gold_path, 'w') as save_gold:
with torch.no_grad():
for batch in test_iter:
src = batch.src
labels = batch.src_sent_labels
segs = batch.segs
clss = batch.clss
mask = batch.mask_src
mask_cls = batch.mask_cls
gold = []
pred = []
if (cal_lead):
selected_ids = [list(range(batch.clss.size(1)))] * batch.batch_size
elif (cal_oracle):
selected_ids = [[j for j in range(batch.clss.size(1)) if labels[i][j] == 1] for i in
range(batch.batch_size)]
else:
sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)
loss = self.loss(sent_scores, labels.float())
loss = (loss * mask.float()).sum()
batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels))
stats.update(batch_stats)
sent_scores = sent_scores + mask.float()
sent_scores = sent_scores.cpu().data.numpy()
selected_ids = np.argsort(-sent_scores, 1)
# selected_ids = np.sort(selected_ids,1)
for i, idx in enumerate(selected_ids):
_pred = []
if (len(batch.src_str[i]) == 0):
continue
for j in selected_ids[i][:len(batch.src_str[i])]:
if (j >= len(batch.src_str[i])):
continue
candidate = batch.src_str[i][j].strip()
if (self.args.block_trigram):
if (not _block_tri(candidate, _pred)):
_pred.append(candidate)
else:
_pred.append(candidate)
if ((not cal_oracle) and (not self.args.recall_eval) and len(_pred) == 3):
break
_pred = '<q>'.join(_pred)
if (self.args.recall_eval):
_pred = ' '.join(_pred.split()[:len(batch.tgt_str[i].split())])
pred.append(_pred)
gold.append(batch.tgt_str[i])
for i in range(len(gold)):
save_gold.write(gold[i].strip() + '\n')
for i in range(len(pred)):
save_pred.write(pred[i].strip() + '\n')
if (step != -1 and self.args.report_rouge):
rouges = test_rouge(self.args.temp_dir, can_path, gold_path)
logger.info('Rouges at step %d \n%s' % (step, rouge_results_to_str(rouges)))
self._report_step(0, step, valid_stats=stats)
return stats
def _gradient_accumulation(self, true_batchs, normalization, total_stats,
report_stats):
if self.grad_accum_count > 1:
self.model.zero_grad()
for batch in true_batchs:
if self.grad_accum_count == 1:
self.model.zero_grad()
src = batch.src
labels = batch.src_sent_labels
segs = batch.segs
clss = batch.clss
mask = batch.mask_src
mask_cls = batch.mask_cls
sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)
loss = self.loss(sent_scores, labels.float())
loss = (loss * mask.float()).sum()
(loss / loss.numel()).backward()
# loss.div(float(normalization)).backward()
batch_stats = Statistics(float(loss.cpu().data.numpy()), normalization)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
# 4. Update the parameters and statistics.
if self.grad_accum_count == 1:
# Multi GPU gradient gather
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.grad_accum_count > 1:
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
def _save(self, step):
real_model = self.model
# real_generator = (self.generator.module
# if isinstance(self.generator, torch.nn.DataParallel)
# else self.generator)
model_state_dict = real_model.state_dict()
# generator_state_dict = real_generator.state_dict()
checkpoint = {
'model': model_state_dict,
# 'generator': generator_state_dict,
'opt': self.args,
'optim': self.optim,
}
checkpoint_path = os.path.join(self.args.model_path, 'model_step_%d.pt' % step)
logger.info("Saving checkpoint %s" % checkpoint_path)
# checkpoint_path = '%s_step_%d.pt' % (FLAGS.model_path, step)
if (not os.path.exists(checkpoint_path)):
torch.save(checkpoint, checkpoint_path)
return checkpoint, checkpoint_path
def _start_report_manager(self, start_time=None):
"""
Simple function to start report manager (if any)
"""
if self.report_manager is not None:
if start_time is None:
self.report_manager.start()
else:
self.report_manager.start_time = start_time
def _maybe_gather_stats(self, stat):
"""
Gather statistics in multi-processes cases
Args:
stat(:obj:onmt.utils.Statistics): a Statistics object to gather
or None (it returns None in this case)
Returns:
stat: the updated (or unchanged) stat object
"""
if stat is not None and self.n_gpu > 1:
return Statistics.all_gather_stats(stat)
return stat
def _maybe_report_training(self, step, num_steps, learning_rate,
report_stats):
"""
Simple function to report training stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_training` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_training(
step, num_steps, learning_rate, report_stats,
multigpu=self.n_gpu > 1)
def _report_step(self, learning_rate, step, train_stats=None,
valid_stats=None):
"""
Simple function to report stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_step` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_step(
learning_rate, step, train_stats=train_stats,
valid_stats=valid_stats)
def _maybe_save(self, step):
"""
Save the model if a model saver is set
"""
if self.model_saver is not None:
self.model_saver.maybe_save(step)